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Abstract. Despite advances in early detection, prostate cancer remains the second highest cancer
mortality in American men, and even successful interventions are associated with enormous health care
costs as well as prolonged deleterious effects on quality of patient life. Prostate cancer chemoprevention
is one potential avenue to alleviate these burdens. It is a regime whereby long-term treatments are
intended to prevent or arrest cancer development, in contrast to more direct intervention upon disease
diagnosis. Based on this intention, cancer chemoprevention generally focuses on the use of nontoxic
chemical agents which are well-tolerated for prolonged usage that is necessary to address prostate
cancer’s multistage and lengthy period of progression. One such nontoxic natural agent is the flavonoid
silibinin, derived from the milk thistle plant (Silybum marianum), which has ancient medicinal usage and
potent antioxidant activity. Based on these properties, silibinin has been investigated in a host of cancer
models where it exhibits broad-spectrum efficacy against cancer progression both in vitro and in vivo
without noticeable toxicity. Specifically in prostate cancer models, silibinin has shown the ability to
modulate cell signaling, proliferation, apoptosis, epithelial to mesenchymal transition, invasion,
metastasis, and angiogenesis, which taken together provides strong support for silibinin as a candidate
prostate cancer chemopreventive agent.
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PROSTATE CANCER CHEMOPREVENTION

Cancer chemoprevention is a treatment regime centered
on the use of chemical agents to reduce cancer risk. These
agents may be derived either synthetically or from natural
products and are intended for long-term use, generally
limiting candidate agents to nontoxic compounds. The
rationale for this modality is based on the multistage and
often lengthy period of time required to accumulate the
cellular damage necessary for carcinogenesis (i.e., dysfunc-
tional proliferation, differentiation, apoptosis, etc.). This then
provides an opportunity to inhibit or eliminate initiated cells
or localized lesions prior to their development into a fully
malignant tumor. This general concept of cancer chemo-
prevention can be subdivided into primary, secondary, and

tertiary cancer chemoprevention depending on the stage of
carcinogenesis that is being targeted. Primary chemopreven-
tion focuses on the removal of the initiating cellular
dysfunction/s to decrease or eliminate cancer incidence prior
to cancer formation. This is an ideal clinical outcome as it has
the greatest impact on reducing treatment costs, adverse
effects to the patient, and ultimately, mortality due to cancer.
Barring this outcome and premalignant lesions already
formed, secondary chemoprevention seeks their arrest or
elimination, thus slowing or reversing progression of these
lesions into malignant ones. Finally, if the previous interven-
tions have not or cannot be enacted and a primary tumor has
formed, tertiary chemoprevention seeks to inhibit the pro-
gression of tumor into a metastatic cancer as well as to
prevent the recurrence of this tumor if it has been treated. In
short, a cancer chemoprevention strategy could be applicable
to almost all stages of carcinogenesis including post-therapy.

Prostate cancer is well suited for a cancer chemoprevention
scheme for several reasons. One reason is the number of people
afflicted by this disease. It is the most common cancer diagnosed
in men in the United States, and there were approximately
241,740 new prostate cancer cases in 2012 alone (1). As a result,
prostate cancer is also the second leading cause of mortality with
an estimated 28,170 deaths in 2012 (1). Prostate cancer, when
detected in advanced and metastatic stage, results in high
mortality with almost three fourths of those diagnosed dying
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within 5 years; however, advances in early detection have
resulted in an increase in the treatment of prostate cancer as
early and localized disease (1). But the counted success of early
detection serves as a double-edged sword as it also comes with a
concomitant increase in aggressive intervention where less
aggressive treatment might have better served the patient. This
is the second factor making prostate cancer a candidate for
chemoprevention, situations where adverse side-effects develop
in patients as a consequence of treating prostate cancer
especially in cases where perhaps they were not necessary.
There are a host of treatment options, and each to varying
degrees carries the risk of adverse effects. Among these, the
principle risks are urinary incontinence, bowel issues, and
impotence. In one study, normalized by only reporting patients
with normal function prior to treatment, upwards of 58% of
patients reported minor to major urinary dysfunction and 27%
reported bowel problems 3 years following radical prostatecto-
my (2). In addition, a whopping 94% reported some sexual
dysfunction of which two thirds of these were reported as severe
issues. In another study following the effects of radical
prostatectomy 2 years following treatment, almost 49% of
patients reported urinary issues ranging from complete lack of
control to frequent or occasional leakage (3). Similarly, 60% of
patients reported severe sexual dysfunction (3). In patients
treated with radiation, it was found that urinary issues were only
reported in 17% of cases but bowel issues increased in number
to 66%of patients and sexual dysfunction remained high at 74%
reporting mild or major issues 3 years following treatment (2).
Finally, the enormous cost of treating prostate cancer highlights
the benefits of the chemoprevention approach. In the USA, an
estimated 11.85 billion dollars were spent in 2010 on direct
health care costs alone (4). This cost is predicted to grow as a
combination of increasing cancer incidence, improved early
diagnosis, increasing life expectancy, and higher priced treat-
ments gaining acceptance. In fact, this last factor is estimated to
have increased prostate cancer health care costs by more than
350 million dollars from just 2002 to 2005 (5). As this sum only
reflects the direct health care costs, it does not include lost
worker productivity due to infirmity or death. In addition, the
stress of diagnosis (whether it is accurate or a false positive) and
the fear of disease recurrence place a heavy burden on the
mental well-being of the patient. For these reasons, chemo-
prevention whereby prostate cancer might be prevented from
developing or at least from progressing to a symptomatic level
would be ideal to aid in lowering these costs while improving the
quality of life of a large number of potential sufferers.

As there is such a clear benefit in reducing the burden of
prostate cancer, both societal as well as individual, several
classes of agents have been brought forth as potential chemo-
preventive agents. One agent of interest is finasteride, a
synthetic type II 5-α-reductase (5αR) inhibitor used in the
treatment of male pattern baldness. The mechanism of action of
5αR is to inhibit androgen receptor (AR) induced signaling by
inhibiting the conversion of testosterone into dihydrotestoster-
one, a higher affinity ligand of AR.As androgen-AR signaling is
an important factor in the development and progression of
prostate cancer, this activity has the potential to reduce or
reverse the development of the disease. In a large-scale study,
finasteride was shown to reduce incidence of prostate cancer,
but consistent with the long-term response of prostate cancers to
other AR-ablating compounds, the tumors that did arise despite

finasteride treatment more frequently had high Gleason scores,
which is associated with high mortality (6,7). Other potential
chemopreventive compounds have been derived from natural
products often identified based on their historic usage and more
specifically food products based partially on ease of clinical
translation. Green tea is one such product, its active ingredient
believed to be a mixture of catechins (polyphenols with
antioxidant properties), most commonly derived from the plant
Camellia sinensis (8,9). Green tea has been associated with
decreased overall risk of cancer and a high intake was found to be
associatedwith a lower incidence of prostate cancer inmen (9,10).
Oral administration of green tea catechins reduced PSA levels
(9). Another natural product, soy, contains a mixture of
isoflavones exerting antioxidant properties. Soy consumption
has been associated with a decreased risk of prostate cancer (11),
which might be a result of reported inhibition of signaling
pathways including AR, Akt, NF-κB, mitogen-activated protein
kinases (MAPKs), and Notch signaling (12,13). The tomato
(Solanum lycopersicum) contains a compound called lycopene
which is a carotenoid with strong antioxidant property. Elevated
lycopene consumption is associated with low prostate cancer risk
(10,14). Another fruit, pomegranate (Punica granatum) contains
a mixture of polyphenolic compounds that act as antioxidants
which have been shown to delay prostate cancer growth in
patients diagnosed with prostate cancer (15). A specific polyphe-
nolic antioxidant agent that has been extensively studied for its
chemopreventive properties is silibinin.

SILIBININ

Silibinin (Fig. 1a) is derived from the seeds (Fig. 1b) of milk
thistle (Silybum marianum; Asteraceae) which has its origins in
the Mediterranean region where for millennia it has been used
as a remedy for a variety of ailments, particularly of the liver, gall
bladder, and kidneys. More recently, milk thistle has been found
to be effective in treating hepatic injury due to bile duct
inflammation, cirrhosis, fatty liver, mushroom poisoning, and
viral hepatitis (16). Perhaps as a consequence of this long-
standing medicinal use, the characteristic purple-red flowers of
the milk thistle (Fig. 1c) can now be found growing worldwide.
In modern times, the usage of the whole milk thistle has been
supplemented with a standardized extract of milk thistle seeds
called silymarin. This extract is composed of a complex mixture
of several flavonolignans and other compounds. The flavonoid
silibinin is the principle active ingredient found in silymarin and
is by far the most abundant component, along with the stereo-
isomers dihydrosilybin, isosilybin, silychristin, and silydianin.
Silibinin, in turn, is composed of an approximately equimolar
mixture of two diastereomers (silybin A and silybin B). As a
polyphenolic compound, silibinin is fairly water insoluble and
thus is often administered within capsules. Once in the GI tract,
silibinin is absorbed, circulated, conjugated in the liver, and
excreted, much of it in the bile (17). In mice, plasma concen-
trations of free silibinin peak at 30 min and in tissues at 60 min,
whereupon it decays with a half-life of 57 to 127 min; however,
the concentrations of conjugated silibinin peak at 1 h and decay
with a half-life of 45 to 94 min (18). Silibinin exhibits low toxicity
as reported in studies where animals were intravenously injected
with silymarin. A 50% lethal dose (LD50) required high
concentrations of silymarin, depending on specific experimental
conditions: mice tolerate 400–1,050 mg/kg, rats 385–920 mg/kg,
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and rabbits and dogs 140–300 mg/kg (19–21). When silymarin
was delivered orally, the required values of silymarin to achieve
toxicity were, in some cases, over 10 g/kg (19–21). In two human
trials, a commercial silibinin formulation, silibinin phytosome,
was administered orally to prostate cancer patients at 13 g daily
for a mean of 20 days and 2.5–20 g/daily for 28 days, respectively
(22,23). Consistent with silibinin’s target organ in clinical usage,
the most common adverse event at high doses was asymptom-
atic hepatotoxicity followed by low-grade hyperbilirubinemia
(grades 1–2) and diarrhea (22,23). There was one case of a grade
4 postoperative thromboembolic event (out of 19 total treated
patients within the two trials). Together these studies provide
compelling evidence for well-tolerated administration of high
doses of silibinin in human patients.

BROAD SPECTRUM CANCER CHEMOPREVENTIVE
EFFICACY OF SILIBININ

Flavonoids possess antioxidant activity which has been
reported to result in diverse biologically protective properties
such as inhibiting inflammation, neoplasia, hepatic injury, and
other ailments (24). Consistent with other flavonoids, silibinin
has been found to be a very potent antioxidant, buttressing
native cellular antioxidant mechanisms such as glutathione
(GSH) and superoxide dismutase by scavenging free radicals,
and reactive oxygen species (ROS) (25,26). This may in part
explain silibinin’s effectiveness in addressing hepatic injury
whether as a result of disease or exposure to toxins as this anti-
oxidant activity may eliminate the oxidative stress associated

with hepatic insults preventing the induction of lipid peroxida-
tion (and thus cell death). As a consequence of the general anti-
cancer properties associated with flavonoids collectively, as well
as the strong antioxidant potential of silibinin specifically, there
has been significant interest in adapting silibinin for use as a
chemopreventive agent. In fact, silibinin has been widely
investigated for anti-cancer efficacy in a broad range of cancers
models.

Based on these factors, and the diseases silibinin has been
historically used to treat, it is perhaps not a surprise that silibinin
has been found to have an inhibitory effect on cancers of several
digestive and excretory organs. Silibinin was found to inhibit cell
proliferation and invasion in various hepatocarcinoma cell lines
(27–30) as well as in amouse xenograft model (31). These effects
appear to be a consequence of inducing apoptosis as well as cell
cycle arrest in hepatocarcinoma cells. Silibinin inhibited ERK1/2
signaling, downregulated survivin, highly expressed in cancer
protein-1, the E2F1/DP1 complex, cyclin D1, cyclinD3, cyclin E,
cyclin-dependent kinase (CDK)2, and CDK4 levels and induced
CDK inhibitor (CDKI) Kip1/p27 in hepatocarcinoma HEPG2
cells (27,28). Furthermore, silibinin altered Akt signaling, down-
regulated phosphorylation of retinoblastoma (Rb), upregulated
histone acetylation, and activated caspases 3 and 9 in hepatoma
HuH7 cells (30). In addition, silibinin reduced vascular endo-
thelial growth factor (VEGF) secretion, metalloproteinase-2
(MMP-2), andCD34 in hepatic cancer cells suggesting inhibition
of angiogenesis in hepatic tumors (29,30). In pancreatic cancer
cell lines, silibinin inhibited their proliferation in a dose- and
time-dependent fashion which translated to a decrease in tumor

Fig. 1. a Chemical structure of silibinin, b milk thistle seeds, and c flower of the S.
marianum; Asteraceae
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volume in a mouse xenograft model (32). Again, this inhibition
appeared to be a function of both increased apoptosis as well as
cell cycle arrest by silibinin. In gastric cancer cells, silibinin dose-
dependently inhibited TNF-α-induced secretion of metallopro-
teinase-9 (MMP-9) (33). Silibinin was found to be deliverable to
the human colorectal mucosa in high amounts through ingestion
of nontoxic doses of silibinin (34), and consistent for use as a
chemopreventive agent, silibinin was found to be beneficial in
early colon tumorigenesis (35), reducing loss of differentiation of
carcinomas in mice (36), while also inhibiting colon cancer stem-
like cells (37). Silibinin potently inhibited the growth of HT-29
and LoVo cells both in vitro as well as in xenograft models,
strongly inducing G1 and more modestly G2-M cell cycle arrest
(38,39). This was associated with decreased levels of cyclins (A,
B1, D1, D3, and E), cell division cycle 25C (cdc25C), and Cdc2/
p34; decreased activity of cyclin-dependent kinases (1,2,4,6); and
phosphorylated Rb in conjunction with increased levels of
CDKIs (Cip1/21 and Kip1/p27) (38,39). Silibinin also induced
apoptosis associated with increased activation of caspases 3 and
9 as well as poly(ADP-ribose) polymerase (PARP) in LoVo cells
(38); however, silibinin-induced apoptosis was independent of
caspases activation in HT-29 cells (39). Furthermore, the
invasive potential of LoVo cells was reduced by silibinin which
was associated with a decrease in MMP-2 (40). Silibinin
treatment also led to a decrease in polyp size and number in
APCmin/+ mice, a model of familial adenomatous polyposis
(41,42). This phenomenon was associated with decreased β-
catenin, c-Myc, phospho-glycogen synthase kinase-3β, and
phospho-Akt (41,42). Silibinin-mediated reduction in
colorectal carcinoma proliferation and concomitant increase in
apoptosis were associated with inhibition of ERK1/2 and Akt
(43). Silibinin-mediated angiogenesis inhibition was associated
with decreased VEGF, cyclooxygenase (COX), hypoxia-
inducible factor-1α (HIF-1α), inducible nitric oxide synthase
(iNOS), nitrotyrosine and nitrite levels, and an increased
VEGFR-1 (Flt-1) expression (41,43–45). Silibinin inhibited
CDK8 and β-catenin signaling which inhibited SW480 tumor
growth (46) and initiated an autophagic-mediated survival
response in SW480 and SW620 cells (47). Silibinin also
suppressed 1,2-dimethylhydrazine (DMH)-induced colon
carcinogenesis in rat models via modulating xenobiotic
metabolizing enzymes and increasing enzymatic antioxidants to
detoxify carcinogens (48,49). This action translated to decreased
oxidative stress and subsequent lipid peroxidation, abrogating
DMH-induced neoplasia (50).

Consistent with its effect in models of digestive organ
cancers, silibinin was also found to inhibit excretory organ
cancers. Silibinin treatment decreased renal cancer 786-O cell
proliferation and invasiveness (51), while inhibiting proliferation
and increasing apoptosis in renal cancer Caki-1 cells (52). This
action was associated with inhibition of epidermal growth factor
(EGF), ERK1/2, and survivin expression with concomitant
upregulation of p53 expression and caspase cleavage (52).
Silibinin feeding reduced the size of 786-O renal tumors in mice
xenografts which was associated with decreased expression of
MMP-2, MMP-9, and urokinase-type plasminogen activator (u-
PA), and activation of p38 and ERK1/2 (51). Silibinin also
enhanced the sensitivity of −786-O renal cell carcinoma cells
towards 5-fluorouracil and paclitaxel (51). Treatment of SN12K1
cells with silibinin reduced cell viability and DNA synthesis
resulting in apoptosis (53). Likewise, silibinin-fed SCID mice

injected with SN12K1 cells exhibited a reduction in tumor size
(54). Consistent with these results, several studies have shown
that silibinin inhibits growth as well as induces apoptosis in
several urinary bladder cancer cell lines which were associated
with an increase in p53 expression, downregulation of survivin,
cyclin D1, ERK1/2 phosphorylation and nuclear phospho-p65,
cleavage of caspases, PARP, and Cip1/p21, and mitochondrial
release of cytochrome c, Omi/HtrA2, and apoptosis-inducing
factor (55–60). This silibinin-mediated inhibition was also
observed in rat models of urinary bladder cancer reducing
lesions (60).

Silibinin was also found to reduce oral cancer cell invasion
as a consequence of decreased MMP-2 and u-Pa expression,
decreased ERK1/2 activation, and increased tissue inhibitor of
metalloproteinase-2 (TIMP-2), and plasminogen activator inhib-
itor-1 (PAI-1) expression (61). Likewise, in laryngeal squamous
cell carcinoma SNU-46 cells, silibinin induced apoptosis (62).
Furthermore, silibinin inhibited proliferation, invasion, and
angiogenesis in lung carcinoma while simultaneously inducing
apoptosis (63–65). Proliferation ofAnip973 cells was inhibited by
silibinin (66), which in non-small cell lung cancer cell lines
corresponded to inhibition of CDK2, CDK4, and Rb phosphor-
ylation, as well as induction of apoptosis by activation of the
caspase cascade pathway (63,67). Similar to oral cancer, silibinin
treatment concentration- and time-dependently decreased
MMP-2 and u-Pa expression through inhibition of either
ERK1/2 or Akt phosphorylation along with increasing TIMP-2
expression which together translated to an inhibition of inva-
siveness in the aggressive human lung adenocarcinoma A549
cells (68,69). Silibinin was reported to decrease expression of
COX-2, iNOS, MMP-2, and MMP-9 and inhibit activation of
ERK1/2, NF-κB, STAT-1, and STAT-3 in mouse lung epithelial
LM2 cells (70). Reduction of iNOS elicited by silibinin treatment
was also found inA549 cells (71). In theA/Jmousemodel of lung
cancer, silibinin treatment reduced the number, growth, progres-
sion, and angiogenesis of induced tumors which was associated
with downregulatedVEGF, COX-2, iNOS,HIF-1α, STAT-3, and
NF-κB, and increased Ang-2 and Tie-2 (64,65). Furthermore,
silibinin enhanced sensitivity of A549 cells to doxorubicin
through reduction of NFκ-B-mediated chemoresistance (72). In
glioblastoma models, silibinin was shown to inhibit growth and
invasiveness and induce apoptosis (73,74). Silibinin was also
reported to inhibit EGFR activation in a rat glioma cell line
stably expressing human EGFR (75). NF-κB-mediated stimula-
tion of MMP-9 in glioblastoma U87 cells was found to be
abrogated by silibinin treatment which served to attenuate
invasiveness (74). Silibinin was found to induce caspase-mediat-
ed apoptosis by activatingMAPKs as well as reverting sensitivity
to TRAIL signaling in otherwise resistant glioma cells by
modulating components of the death receptor-mediated apopto-
tic pathway (73,76). Interestingly, in the glioblastoma cell line,
U87MG, silibinin appeared to partially synergize with arsenic
trioxide treatments to increase apoptosis while inhibiting cell
proliferation, metabolism, and mRNA expression of several
proteinases (77) suggesting the possibility of combinatorial
treatments to arrest cancer.

Several studies have also revealed that silibinin offers
protection from photo-carcinogenesis in skin cancer models. A
key mechanism by which silibinin mitigates UVA- and UVB-
induced dysfunction is activation of the DNAPK-p53 pathway,
inhibiting DNA synthesis, cellular proliferation, and apoptosis
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and inducing cell cycle arrest and repair in response to UV-
induced DNA damage which together serves to inhibit tumor
appearance and growth (78–81). This response is in part
mediated by inhibition of ERK1/2, with concomitant increase
of p53 and p21/Cip1 (82,83). Furthermore, silibinin was found to
abrogate ATP and GSH depletion, ROS production, and lipid
peroxidation in UVA-irradiated human keratinocytes,
corresponding to inhibition of UVB-induced PARP and caspase
9 cleavage (84,85). These effects operated in conjunction with
inhibition of inflammatory mediators such as COX-2, STAT-3,
and NF-κB and angiogenic mediators such as HIF-1α and iNOS
(86). In MG-63 cells, silibinin treatment reduced osteosarcoma
invasiveness which was associated with inhibition of focal
adhesion kinase, ERK1/2 activation, and uPA and MMP-2
expression (87). Similarly, in HT1080 cells, silibinin treatment
activated p38 and JNK pathways and inhibited ERK and Akt
pathways resulting in autophagy (88).

In breast cancer models, silibinin induced apoptosis in
MCF-7 cells which synergized with inhibition of insulin growth
factor receptor (IGFR) (89,90) and also inhibited metastasis of
MDA-MB-231 cells (91). In addition, silibinin dose-dependently
decreased expression of EGFR ligand-induced CD44, 12-O-
tetradecanoylphorbol-13-acetate-induced MMP-9 and VEGF,
as well as activation of ERK1/2 (92–94). Interestingly, silibinin
induced reactive nitrogen species and ROS generation in MCF-
7 cells (95). These phenomena translated to induction of tumor
growth arrest and apoptosis in silibinin-treated HER-2/neu
transgenic mice (96). In accordance with these findings, silibinin
increased apoptosis and induced G2-M cell cycle arrest of
A2780/taxol cells, enhancing their sensitivity to paclitaxel, which
was associated with the downregulation of survivin and P-
glycoproteins (97). In turn, mice xenografts with A2780 cells
exhibited a reduction in angiogenic activity in response to
silipide (silibinin phytosomes) treatment as a consequence of
downregulation of VEGF receptor 3 and upregulation of Ang-2
(98). Together, the abovementioned studies clearly demonstrat-
ed the broad spectrum chemopreventive and anticancer efficacy
of silibinin. Next, we have focused on silibinin efficacy and
mechanism of its action against prostate cancer cells.

MOLECULAR MECHANISMS FOR SILIBININ
CHEMOPREVENTIVE EFFICACY
AGAINST PROSTATE CANCER

Silibinin has been shown to potently inhibit prostate
cancer through targeting multiple cell signaling pathways,
decreasing proliferation, inducing apoptosis, and inhibiting
invasion, metastasis, and angiogenesis. The specific molecular
targets of silibinin that induce broad-spectrum efficacy against
prostate cancer are summarized in Fig. 2.

SILIBININ EFFECTS ON CELL SIGNALING
IN PROSTATE CANCER CELLS

Silibinin has been shown to disrupt several signaling
pathways known to be important in the development and
progression of prostate cancer. Treatment of prostate cancer
cells with silibinin abrogated constitutive activation of STAT-3 in
DU145 cells (99), disrupted EGFR signaling in LNCaP and
DU145 cells (100,101), targeted IGFR signaling in PC3 cells
(102), the Wnt/β-catenin pathway in PC3 and DU145 cells

(103), and AR signaling in LNCaP cells both directly by
reducing nuclear localization of the receptor (104) and indirectly
through downregulation of a co-activator, prostate epithelium-
derived Ets transcription factor (105,106). Disruption of EGF
signaling by silibinin in prostate cancer cells was associated with
a decrease in secreted transforming growth factor-α and
modulation of MAPK activity of both ERK1/2 and JNK1/2
(101). Disruption of the Wnt/β-catenin pathway involved
modulation of a co-receptor, the low-density lipoprotein recep-
tor-related protein-6 (LRP6) (103). Silibinin inhibited the
promoter activity, mRNA, basal expression, as well as phos-
phorylation of LRP6 (103). Silibinin also dose-dependently
induced mRNA for insulin-like growth factor-binding protein-3
(IGFBP-3) which translated into higher concentrations of
IGFBP-3 in PC3 conditioned medium (102). In accordance with
this finding, silibinin feeding of mice was found to upregulate
both circulating plasma and tumor levels of IGFBP-3 and a
decreased loss of differentiation in their tumors (36,107,108).
Finally, silibininwas found in several studies to broadly alter NF-
κB signaling (109,110). It inhibited the constitutive activation of
NF-κB found in prostate carcinoma DU145 cells, decreasing
IKKα kinase activity, the resultant ratio of phospho-IκBα to
IκBα, and ultimately, the translocation of p50 and p65 NF-κB
subunits to the nucleus (109).

SILIBININ INHIBITS PROLIFERATION OF PROSTATE
CANCER CELLS

Multiple studies have shown that silibinin inhibits prostate
cancer cell proliferation (111–114). In addition, mice fed with
silibinin exhibited decreased tumor growth both in xenograft as
well as transgenic models of prostate cancer (107,108,115–117).
These phenomena were in part due to potent cell cycle arrest
induced by silibinin in prostate cancer cells (111). Silibinin
mediated G1 arrest in prostate cancer cells by modulating a
plethora of elements in the cyclins–CDKs–CDKIs pathway:
decreasing protein levels of cyclin D1, cyclin D3, cyclin E,
CDK4, CDK6, and CDK2, and kinase activity of CDK2 and
CDK4, increasing CDKIs Kip1/p27 and Cip1/p21, and seques-
t e r ing cyc l i n D1 and CDK2 in the cy top la sm
(108,111,113,118,119). In addition, silibinin induced a marked
increase in Rb levels, principally in the hypophosphorylated
retinoblastoma Rb/p107 and Rb2/p130, as well as a marked
decrease in levels of the transcription factors, E2F3, E2F4, and
E2F5 which altogether serves to inhibit cell cycle progression
(113,118). Furthermore, silibinin mediated G2-M arrest by
modulating the Chk2–Cdc25C–Cdc2/cyclin B1 pathway and
decreasing levels of cyclin A, cyclin B1, both total and
phosphorylated Cdc2, Cdc25B, and Cdc25C phosphatases, and
inhibiting Cdc2 kinase activity (111,120,121). The inhibition of
Cdc25C phosphatases combined with increased checkpoint
kinase-2 phosphorylation resulted in the translocation of nuclear
Cdc25C to the cytoplasm as a result of increased phosphoryla-
tion (111). This was accompanied by an increased binding with
14–3-3β (111). In addition, silibinin has been reported to inhibit
both telomerase as well as DNA topoisomerase IIα activity in
LNCaP and DU145 cells, respectively (105,122). Interestingly,
both mitoxantrone and doxorubicin were found to synergize
with silibinin in inhibiting prostate cancer cell proliferation
(121,123), and cisplatin and carboplatin were found to synergize
with silibinin in inducing G2-M arrest corresponding to potent
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downregulation of Cdc2, cyclin B1, and Cdc25c (124). Together,
these findings suggest the potential for combinatorial treatments
to arrest prostate cancer progression.

SILIBININ INDUCES APOPTOSIS IN PROSTATE
CANCER CELLS

Studies have shown that silibinin also initiates apoptosis
in prostate cancer cells under certain treatment conditions
(99,107,108,124,125). The mechanism appeared to be a
consequence of decreased Bcl-2 and survivin levels, caspase
activation (caspases 3, 9, and 7), subsequent cytochrome c
release from mitochondria, and ultimately apoptosis
(99,107,108,124). Interestingly, mitoxantrone, doxorubicin,
cisplatin, and carboplatin were each found to synergize with
silibinin in inducing apoptosis in prostate cancer cells
(121,123,124).

SILIBININ INHIBITS INVASION AND METASTASIS
OF PROSTATE CANCER CELLS

Multiple studies have revealed that silibinin initiates a shift
of treated advanced prostate cancer cells back into an epithelial
phenotype and inhibits metastasis (110,116,117,126). It was
reported that in PC3, PC3MM2, and C4-2B cells, silibinin
upregulated E-cadherin on their cell surface, significantly
inhibiting their migratory and invasive potential (126). This
phenomenon appeared to be a result of downregulation of
epithelial to mesenchymal transition (EMT) regulatory mole-
cules Slug, Snail, phospho-Akt (ser473), nuclear β-catenin,
phospho-Src (tyr419), and Hakai (126). This silibinin-induced
increase in E-cadherin was also found in a transgenic

adenocarcinoma of the mouse prostate (TRAMP) model in
which silibinin decreased levels ofMMPs, Snail, fibronectin, and
vimentin translating into a reduction in cancer metastasis
(116,117). Other studies found ARCaPM cells treated with
silibinin exhibited decreased expression of major EMT
regulators, the transcription factors ZEB1 and Slug,
corresponding with decreased expression of EMT markers,
vimentin and MMP-2, together translating into dose- and time-
dependent reduction of invasion, motility, and migration
(110,127). Along with MMP-2, silibinin has been found to
inhibit MMP-9 expression in human prostate carcinoma cell
lines (116,117).

SILIBININ EXHIBITS STRONG ANTI-ANGIOGENIC
EFFICACY AGAINST PROSTATE CANCER CELLS

Targeting angiogenesis is considered an important ele-
ment in preventing the growth and progression of solid
tumors including prostate cancer. Silibinin was reported to
inhibit angiogenesis, decreasing VEGF expression levels and
tumor microvessel density in prostate tumors (107,108,116).
This anti-angiogenic potential was supported in a study of
TRAMP mice where silibinin feeding resulted in decreasing
expression of platelet endothelial cell adhesion molecule-1
(PECAM1)/CD-31, VEGF, VEGFR2, HIF-1α, and iNOS
(117). This expression pattern corresponded to an increase in
glucose and citrate use along with a concomitant decrease in
lactate, cholesterol, and phosphatidylcholine levels in pros-
tatic tumors of silibinin-fed TRAMP mice (128). Silibinin
treatment of LNCaP and PC3 prostate cancer cells also
inhibited their synthesis of HIF-1α both basally as well as
induced by hypoxia (129).

Fig. 2. Schematic representation of the molecular mechanisms for silibinin-mediated prostate cancer
chemoprevention
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CONCLUSIONS

Silibinin, a flavonoid antioxidant derived from the milk
thistle has been used for millennia to treat a diverse set of
ailments. In more recent times, as a product of this long-term
historical usage and aforementioned antioxidant chemistry
along with protective properties identified in several other
flavonoids, silibinin has been investigated in a host of cancer
models. In these studies, silibinin has been found to possess
multifactorial anti-cancer efficacy, operating on a broad array
of signaling and regulatory mechanisms in diverse milieus.
Specifically in regards to prostate cancer, silibinin has been
shown to alter cell proliferation, apoptosis, EMT, invasion,
metastasis, and angiogenesis. These effects of silibinin have
the potential to impact prostate cancer progression encom-
passing the full range of clinical disease presentation from
initial cellular dysfunctions in incipient lesions to advanced
metastatic tumors. However, further investigations to confirm
the mechanisms of silibinin effect on the prostate cancer
microenvironment, as well as to elucidate its efficacious
delivery and clinical usage are still needed. Taken together,
the evidence provides strong support for the promise of
silibinin as a candidate prostate cancer chemopreventive
agent.
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