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Abstract: Apigenin, a flavonoid commonly present in the daily diet, is known for its 

potential anti-tumor properties. However, the effect of apigenin via oral administration on 

tumor growth and metastasis remains unknown. In this study we developed an orthotopic 

ovarian tumor model in nude mice to test the effect of apigenin oral administration, and 

showed that apigenin inhibited the micrometastasis of cancer cells in the animal tumor 

model. To understand the mechanism of apigenin in inhibiting metastasis, we found that 

apigenin greatly inhibited MMP-9 expression and p-AKT and p-p70S6K1 levels in the 

tumor tissues compared to the control group. We further demonstrated that the 

downregulation of MMP-9 by apigenin was mediated by the AKT/p70S6K1 pathway. 

These findings help to address the question with common interests to the public of whether 

oral uptake of flavonoids is effective in preventing cancer. Our results demonstrate for the 

first time that oral uptake of apigenin can inhibit tumor metastasis through MMP-9 

expression using the orthotopic ovarian tumor model.  
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1. Introduction 

Ovarian cancer is a common female tumor worldwide, and has the highest mortality rate among all 

gynecological malignancies [1]. Due to difficulties in early diagnosis, chemotherapy is the only 

treatment of choice for the majority of ovarian cancer patients. However, clinical experience suggests 

that patients are prone to developing chemoresistance toward the commonly used anti-cancer agents, 

such as cisplatin, thus directly diminishing successful chemotherapy. Therefore, the search for new 

alternative agents with a preventive or therapeutic effect is important for ovarian cancer treatment. 

Apigenin (4’,5,7-trihydroxyflavone) is a dietary flavonoid commonly found in many fruits and 

vegetables [2]. We previously found that apigenin inhibits tumor growth and angiogenesis induced by 

different cancer cells [3–5]. Several other laboratories have also demonstrated that apigenin has 

antiproliferative and anti-tumor properties in pancreas, prostate and colon cancer cells [6–8]. However, 

it is unknown whether the oral uptake of apigenin has any effect in inhibiting tumor growth and 

metastasis due to the general concern of flavonoid bioavailability.  

Activation of PI3K/AKT and Ras/MAPK is associated with increased cell scattering, cell motility, 

proliferation and survival [9]. Our previous studies have indicated that the PI3K/AKT/mTOR/ 

p70S6K1 pathway is critical for ovarian cancer cell proliferation, migration and invasion [10]. We also 

demonstrate that apigenin inhibits cancer cell proliferation by blocking the PI3K/AKT pathway in 

ovarian cancer and lung cancer cells [3,11]. Other studies have shown that apigenin can impair cancer 

cell motility by suppressing focal adhesion kinase/Src signaling, a key step in the development of 

tumors and ultimately metastasis [12]. Since many fruits and vegetables contain apigenin, there is 

general public interest as to whether oral uptake of apigenin has any anti-cancer effect. To answer this 

question, we developed an orthotopic ovarian cancer model by implanting OVCAR-3 cells into the 

ovaries of nude mice to determine whether apigenin oral administration has any effect on tumor 

growth and metastasis.  

2. Results and Discussion 

2.1. Establishment of the Orthotopic Ovarian Tumor Model in Nude Mice 

To mimic normal ovarian cancer development, we injected ovarian epithelial cancer cells OVCAR-3 

cells, which are featured by strong tumorigenicity and resistance to chemotherapy, into the ovaries of 

nude mice, to develop an orthotopic ovarian tumor model. In this orthotopic ovarian tumor model, we 

grow cancer cells in the natural ovary environment relevant to normal tumor development in which 

bioactivity and pharmacological kinetics are similar to those of the human ovarian tumor development 

(Figure 1a). All the mice had palpable tumors in the abdominal cavity four weeks after the 

implantation of OVCAR-3 cells into ovaries. The tumors were collected, fixed in Bouin’s solution, 

embedded in paraffin, and stained with hematoxylin and eosin, which showed the characteristic 

structure of ovarian cystadenocarcinoma (Figure 1b). The levels of CA125 expression, a biomarker of 



Int. J. Mol. Sci. 2012, 13 7273 

 

 

ovarian cancer, were greatly elevated in the tumor tissues using immunohistochemistry analysis 

(Figure 1c), confirming the successful generation of the ovarian tumor model. 

Figure 1. (a) Orthotopic ovarian tumor model in this study; (b) H&E staining of tumor 

section showing tumor cells and surrounding tissue; (c) Expression of ovarian cancer 

biomarker CA125 detected by immunohistochemical staining. Upper panel: section was 

incubated with PBS buffer instead of CA125 primary antibody for immunohistochemical 

staining (200× magnifications), bottom panel: section incubated with CA125 antibody. 

 

2.2. Apigenin Did not Significantly Inhibit Tumor Growth, but Inhibited the Occurrence of 

Micrometastasis in the Small Intestine and Stomach 

To test the effect of apigenin oral administration on tumor development, we divided 30 nude mice 

into three groups, gave the mice with 0.2% gelatin solution, 75 mg/kg and 150 mg/kg apigenin 

dissolved in 0.2% gelatin solution, respectively, by intragastric administration daily for one week 

before injecting ovarian cancer cells into the ovaries of mice. Apigenin at 75 mg/kg and 150 mg/kg 

respectively represent 0.025% and 0.05% of food uptake daily by the mice. Oral administration of the 

solvent and apigenin was continued as above until the mice were sacrificed. The mouse body weight 

was measured every week. No significant difference was found regarding the averages of mouse body 

weight among the three different groups (data not shown). We found that apigenin treatment appeared 

to inhibit tumor growth; but the differences among the control, low dose, and high dose treatments 

were not statistically significant (Figure 2). Micrometastasis is an early event in cancer dissemination. 

To examine the micrometastases of human ovarian cancer cells in the host mice, we performed a 

metastasis assay based on genomic PCR analysis for Alu sequences. Alu insertion elements are the 

most numerous short interspersed repeats in the human genome discovered in the mid-1980s [13]. Alu 

sequences are specific to the human genome and this can be utilized to evaluate the metastatic 

potential of human cancer cells in different tissues and organs without the interference of mouse cells. 

To analyze the sensitivity of the PCR-based assay, we found that a total of 100 OVCAR-3 cells in one 

million murine cells were detectable by the assay (data not shown). We analyzed the Alu sequences in 

liver, lung, small intestine and stomach of the nude mice. The results in Table 1 showed whether 

human ovarian cancer cells can be detected in the 10 mice for each group in four different organs. For 

example, ovarian cancer cells were detected in the small intestine in seven mice in the solvent control 

group, and were also detected in five and three mice respectively in the low and high dose  

apigenin-treated groups. There are significant differences of micrometastasis between the control and 
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high dose apigenin-treated group. Similarly the differences of micrometastasis between the control and 

the high dose apigenin-treated group are statistically significant in the stomach tissues (Table 1).  

Figure 2. Tumor growth assay. Average tumor weights per mouse for each group were 

presented as mean ± SD when the mice were euthanized in 4 weeks (n = 10). 

 

Table 1. The numbers of micrometastases in four different organs from three groups. The 

total numbers of mice with detectable human ovarian cancer cells in specific organs  

from three groups are shown with each group containing 10 mice.  

Group Lung Small intestine Liver Stomach 

Control 4/10 7/10 7/10 6/10 
Low dose (75 mg/kg) 3/10 5/10 6/10 2/10 * 

High dose (150 mg/kg) 3/10 3/10 * 5/10 3/10 * 

* indicates significant difference (p < 0.05, χ2-test). 

2.3. Apigenin Significantly Decreased the Number of Metastasis Cancer Cells Detected in Several Organs 

To determine the amount of micrometastasis in the organs, we quantified the Alu expression levels 

in different tissue samples. Low doses of apigenin treatment significantly decrease the magnitude of 

micrometastasis in the liver and stomach, while high doses of apigenin treatment greatly inhibited the 

micrometastasis in all the four organs tested (Figure 3a,b). Collectively, our in vivo experiments 

indicate that apigenin inhibits ovarian cancer micrometastasis. As apigenin was administered via the 

oral route, it indicates that oral uptake of apigenin also has an effect in inhibiting tumor metastasis. 

Thus, it would be interesting to further investigate the metabolism and pharmacokinetics of apigenin 

after oral administration in the future. 

Figure 3. Detection of Cancer Cells in Different Organs. (a) Representative Alu bands in 

liver tissues; (b) Quantification of Alu expression in four organs from three groups (n = 10).  
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Figure 3. Cont. 

 

2.4. Apigenin Inhibited OVCAR-3 Cell Migration and Invasion  

The metastatic process involves cell scattering, motility, ECM degradation, migration and invasion 

through the basement membranes [14]. To examine whether apigenin affects ovarian cancer cell 

migration in vitro, we performed wound-healing experiments using OVCAR-3 cells and measured the 

distance of cell migration to the wound area. We observed a significantly slower wound-healing rate in 

the cells treated with 10 μM apigenin for 48 h compared to the control cells (Figure 4a,b). There was 

no significant difference in cell viability between control cells and apigenin-treated cells (data not 

shown). The invasiveness of tumor cells represents the potential metastatic capacity. We used the 

Transwell assay to evaluate the invasiveness by counting the number of cell invasions through the 

Matrigel layer. Apigenin treatment inhibited OVCAR-3 invasion in a dose-dependent manner  

(Figure 4c,d). 

2.5. Apigenin Inhibited MMP-9 Expression through AKT/p70S6K1 Pathway  

The AKT/p70S6K1 signaling pathway plays an important role in hepatocyte growth factor  

(HGF)-induced cell invasion and metastasis [15]. Our previous study also demonstrated the important 

role of PI3K/AKT/mTOR/p70S6K1 pathway in cell migration and invasion in OVCAR-3 cells [10]. 

To determine what signaling molecules and pathways were affected in tumors from mice treated with 

solvent or apigenin, we found that apigenin treatment greatly decreased levels of AKT phosphorylation, 

but did not affect total AKT, total and p-p44/42-MAPK levels (Figure 5a,b). Apigenin treatment also 

decreased the expression levels of p-p70S6K1, but not total p70S6K1 expression (Figure 5c,d). Matrix 

metalleproteinases (MMPs) are a family of endopeptidases that are associated with tumor cell invasion 

and metastasis [16]. Their major contribution to cancer development is to degrade ECM molecules for 

promoting cancer cell migration/invasion across tissues boundaries [17]. Increased expression of both 

MMP-2 and MMP-9 in human ovarian cancer cells is associated with metastasis potential and poor 

prognosis of the disease [15]. By contrast, the down-regulation of both proteins by antisense strategies 
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or by overexpression of natural inhibitors inhibits metastasis [18]. In this study, we found that the 

expression levels of MMP-9, but not MMP-2, in ovarian tumor tissues were significantly decreased in 

apigenin-treated groups (Figure 5e,f). Similar results were obtained by immunohistochemistry analysis 

that showed that apigenin treatment greatly diminished the expression levels of MMP-9 and p-AKT in 

the tumor tissues (Figure 5g). It was reported that MMP-9 can be activated by fibronectin via  

PI3K-AKT pathways in ovarian cancer cells [19]. To further determine whether the inhibition of 

MMP-9 by apigenin was mediated by AKT, we infected OVCAR-3 cells with adenovirus carrying 

GFP or Myr-AKT, an active form of AKT. As shown in Figure 5i, total AKT was overexpressed in 

cells after infection. However, the inhibitory effect of apigenin on MMP-9 was rescued in the cells 

constitutively expressing Myr-AKT. This indicated that AKT is an essential upstream molecule of 

MMP-9 expression which is inhibited by apigenin. 

Figure 4. Cell Migration and Invasion Assay. (a) OVCAR-3 cells were cultured to 90% 

confluence. A sterile 200 μL pipette tip was used to scratch the cells to form a wound. The 

cells were then washed with PBS buffer, and cultured in RPMI 1640 medium containing 

10% FBS with 10 μM apigenin for 48 h. The cells treated with solvent alone were used as 

control. The migration of the cells to the wound was visualized with an inverted Olympus 

phase-contrast microscope. The representative fields were photographed; (b) The relative 

healing rates were quantified with measurements of the gap sizes after the culture, and 

normalized to that of control. Three different areas in each assay were chosen to measure 

the distances of migrating cells to the origin of the wound. The mean values and the 

standard deviation were obtained from three experiments; (c) The representative images of 

invasive cells at the bottom of the membrane stained with crystal violet were visualized as 

shown; (d) The stained cells were eluted by 20% glacial acetic acid for 20 min. The elution 

was measured at 570 nm to obtain the OD570 values, and normalized to that of control. 

Each treatment had five replicates. All tests were performed in triplicate and presented as 

mean ± SD. * indicates significant difference (p < 0.05, One-Way ANOVA). 

 



Int. J. Mol. Sci. 2012, 13 7277 

 

 

Figure 5. Signaling molecules affected by apigenin treatment. (a–f) Levels of p44/42-MAPK, 

total MAPK, p-AKT, total AKT, p-p70S6K1, total p70S6K1, MMP-2 and MMP-9 proteins 

in tumor tissues were analyzed by immunoblotting as described in Materials and  

Methods. The representative bands from three samples in each group are shown. Scanning 

densitometry was used for quantification of specific protein signals. Relative expression 

levels of p-AKT and p-p70S6K1 were normalized to levels of total AKT and total 

p70S6K1, respectively; and levels of MMP-2 and MMP-9 were normalized to those of  

β-actin; and the results were presented as mean ± SD (n = 10). * indicates significant 

difference compared to the control (p < 0.05); (g) Tumor sections were prepared  

for immunohistochemical staining using antibodies against p-AKT and MMP-9. 

Representative images from the control group and high dose apigenin-treated group are 

shown (200×); (h) OVCAR-3 cells were cultured in RPMI 1640 medium. The expression 

levels of MMP-2 and MMP-9 were measured by immunoblotting in the cells treated by the 

solvent and different doses of apigenin for 48 h; (i) OVCAR-3 cells were infected by 

adenovirus carrying Myr-AKT (Ad-Myr-AKT) or GFP vector (Ad-GFP) at 50 MOI for  

48 h, followed by the treatment with apigenin at different doses for 48 h. The protein levels 

of total AKT, MMP-2, and MMP-9 were detected by immunoblotting.  
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Figure 5. Cont. 

 

 

3. Materials and Methods  

3.1. Chemicals and Antibodies 

Apigenin was purchased from Shanghai Winherb Medical Science Co (Shanghai, China). The 

antibodies against phospho-AKT (Ser473), total AKT, p70S6K1, β-actin and phospho-p44/42MAPK 

(Thr202/Tyr204) were purchased from Cell Signaling Technology (Beverly, MA, USA). The 

antibodies against MMP-2(L638) and MMP-9(W680) were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA).  

3.2. Animal Model and Treatment 

Six-week-old female nude mice (BALB/cA-nu (nu/nu)) were purchased from Shanghai 

Experimental Animal Center (Chinese Academy of Sciences, China), and maintained under  

pathogen-free conditions. All procedures involving animals were approved by the Institutional 

Committee on Animal care, Nanjing Medical University. The mean weight of animals on arrival was 

20 ± 2 g (mean ± SD). OVCAR-3 cells were cultured to 90% confluence, trypsinized, washed twice 

with 1× PBS, and resuspended in serum-free medium. Mice were placed under general anesthesia, 

ovaries were exposed and 20 µL of resuspended cells (1 × 106 cells) were injected onto the ovarian 

capsule via sterile microsyringe.  

All the mice were divided into three groups, one control and two treatment groups (n = 10). The 

apigenin solved in 0.2% gelatin were given daily by intragastric administration at doses of 75 mg/kg 

and 150 mg/kg. The mice that received the same volume of 0.2% gelatin served as the control group. 

The apigenin treatments started one week prior to implantation and continued until the mice were 
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sacrificed. Tumor growth (abdominal distention) and mouse weight were monitored twice a week. 

Four weeks post-implantation, the mice were sacrificed by decapitation. Tumors and organs were 

removed and sectioned in two parts. One part was fixed in Bouin’s fixative solution (saturated picric 

acid 300 mL, formaldehyde 100 mL, glacial acetic acid 20 mL), and embedded by paraffin. The other 

part was snap frozen in liquid nitrogen and stored at −80 °C for analysis. 

3.3. Micrometastasis Assay Based on Genomic PCR for Alu Sequence 

In brief, genomic DNA of tissues were extracted by phenol/chloroform and precipitated by  

ethanol, dissolved in TE buffer and stored at 4 °C. Specific primers for human Alu sequences  

were Alu-sense 5’-CGAGGCGGGTGGATCATGAGGT-3’ (positions 48–69) and Alu-antisense  

5’-TCTGTCGCCCAGGCCGGACT-3’ (positions 273–254) [20]. PCR was carried out using 100 ng of 

genomic DNA as template and recombinant Taq DNA polymerase with the following thermocycling 

conditions: an initial denaturation step of 94 °C for 4 min; 25 cycles comprising 94 °C for 30 s,  

60 °C for 45 s, and 72 °C for 45 s; and a final extension step of 72 °C for 7 min. 

3.4. Immunoblotting 

Harvested cells were washed in cold 1× PBS buffer, and lysed in ice-cold radioimmunoprecipitation 

assay (RIPA) buffer supplemented with protease inhibitors on ice for 30 min. Cell debris was 

discarded by centrifugation at 12,000 rpm for 10 min at 4 °C. The protein concentrations were assayed 

using Bio-Rad protein assay reagents. Protein samples were subjected to immunoblotting analysis. 

3.5. Immunohistochemistry Analysis 

Tumor tissues were sliced and fixed in Bouin’s fixative solution for 24 h, and processed by the 

paraffin-embedded method. The paraffin-embedded tumor tissues (5 μm thick) were heat-immobilized 

and deparaffinized using xylene, then rehydrated in a series of increasing ethanol concentrations.  

In order to reduce background staining, the Dako Envision two-step method of immunohistochemistry 

was used. In brief, the sections were washed three times in 1× PBS buffer, and incubated for 10 min in 

0.3% hydrogen peroxide. Antigen retrieval was performed by boiling the sections in 10 mM citrate 

buffer (pH 6.0) by microwave for 15 min, followed by incubation with primary antibodies: mouse  

anti-human CA125, rabbit anti-human p-AKT (1:100) and MMP-9 (1:200) at 4 °C overnight. After 

three washes, the sections were incubated with HRP-labeled goat anti-rabbit antibody (DAKO; 

Hamburg, Germany) for 30 min. The tumor tissue sections were incubated with  

3,3’-diaminobenzidine (DAB) for 5~10 min, and detected under a light microscope. Sections incubated 

with PBS buffer instead of the primary antibodies were used as a negative control. 

3.6. Cell Culture 

Human ovarian cancer cells OVCAR-3 (American Type Culture Collection, Manassas, VA, USA) 

were cultured in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (HI-FBS; 

Gibco BRL, Grant Island, NY, USA), 100 units/mL penicillin G, and 100 μg/mL streptomycin. 
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3.7. Wound-Healing Assays 

OVCAR-3 cells were cultured to 100% confluence in 6-well plates. The wound-healing assays were 

performed using a sterile 200 μL pipette tip to scratch the cells to form a wound. Cells were washed 

once with cold 1× PBS buffer, and treated with 10 μM apigenin or solvent DMSO alone for 48 h. 

Migration of the cells was evaluated at 0 and 48 h with an inverted Olympus phase-contrast microscope. 

3.8. Matrigel Transwell Invasion Assay 

OVCAR-3 cells were cultured to near confluence in RPMI 1640 medium containing 10% FBS. The 

cells were harvested and washed in RPMI medium without serum. The cells were suspended in RPMI 

1640 medium at 5 × 105 cells/mL. Each Transwell of 24-well plate was pre-coated with 50 μL Matrigel. 

RPMI 1640 medium (600 μL) containing 10% FBS was added to each well (lower compartment), and 

0.1 mL (0.5 × 105 cells) of cell suspension was added onto each Transwell insert (upper compartment). 

The plates were incubated for 48 h at 37 °C. The invaded cells on the bottom surface of the membrane 

were fixed by dehydrated alcohol, and stained by 0.2% crystal violet solution (Sigma-Aldrich, USA). 

After the wash, cells were photographed at 400× magnification. Then the stained cells were eluted by 

20% glacial acetic acid for 20 min. The elutes were measured with a microplate reader (Bio-Dad, 

USA) at 570 nm.  

3.9. Statistical Analysis 

The results represent mean ± SD from three independent experiments. Student’s t test, One-way 

ANOVA and χ2-test were used for statistical analysis by SPSS 11.5 for Windows. Differences were 

considered significant at a value of p < 0.05. 

4. Conclusions  

The anti-tumor potential of the naturally occurring flavonoid apigenin has been extensively studied 

in several cancer cells. However, the prevention and therapeutic effects of apigenin through oral 

administration are unknown. We developed an orthotopic ovarian tumor model and found that 

apigenin oral administration inhibited ovarian tumor micrometastasis in liver, lung, small intestine and 

stomach in different degrees. We also found that apigenin specifically inhibited MMP-9, but not 

MMP-2 expression in both tumor tissues and cancer cells. We found that AKT is an essential molecule 

for apigenin-inhibited MMP-9 expression. AKT may transmit the signal through p70S6K1 to activate 

MMP-9 expression. Since most patients (80%) with ovarian cancer have metastatic disease [21], these 

findings reveal a protective role of apigenin in cancer metastasis via oral uptake, highlighting a new 

rationale for apigenin in ovarian cancer prevention and treatment in the future.  
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