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Abstract

Glioblastomas are the most aggressive primary brain tumors and their heterogeneity and complexity often renders
them non responsive to various conventional treatments. Search for herbal products having potential anti-cancer
activity is an active area of research in the Indian traditional system of medicine i.e., Ayurveda. Tinospora cordifolia,
also named as ‘heavenly elixir’ is used in various ayurvedic decoctions as panacea to treat several body ailments.
The current study investigated the anti-brain cancer potential of 50% ethanolic extract of Tinospora cordifolia (TCE)
using C6 glioma cells. TCE significantly reduced cell proliferation in dose-dependent manner and induced
differentiation in C6 glioma cells, resulting in astrocyte-like morphology as indicated by phase contrast images, GFAP
expression and process outgrowth data of TCE treated cells which exhibited higher number and longer processes
than untreated cells. Reduced proliferation of cells was accompanied by enhanced expression of senescence
marker, mortalin and its translocation from perinuclear to pancytoplasmic spaces. Further, TCE showed anti-
migratory and anti-invasive potential as depicted by wound scratch assay and reduced expression of plasticity
markers NCAM and PSA-NCAM along with MMP-2 and 9. On analysis of the cell cycle and apoptotic markers, TCE
treatment was seen to arrest the C6 cells in G0/G1 and G2/M phase, suppressing expression of G1/S phase specific
protein cyclin D1 and anti-apoptotic protein Bcl-xL, thus supporting its anti-proliferative and apoptosis inducing
potential. Present study provides the first evidence for the presence of anti-proliferative, differentiation-inducing and
anti-migratory/anti-metastatic potential of TCE in glioma cells and possible signaling pathways involved in its mode of
action. Our primary data suggests that TCE and its active components may prove to be promising phytotherapeutic
interventions in gliobalstoma multiformae. 
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Introduction

Glioblastomas are the most aggressive and highly invasive
primary brain tumor types. The complexity and highly dynamic
nature of multiple oncogenic pathways involved in the survival
of these tumor cells renders them nonresponsive to various
available radiotherapeutic and chemotherapeutic treatments.
Plants are the safest source of therapeutic agents, having
multi-targeted mode of action with least or no side effects.
Tinospora cordifolia is one of the most widely used rasayana
herb in ayurveda and commonly known as ‘Giloy’, a
mythological term, that refers to ‘heavenly elixir’ or ‘Amrita’.
The plant extract is being used as an important component of
various ayurvedic formulations that are used for improving
general body health [1,2]. Various bioactive components have

already been isolated from Tinospora cordifolia which belongs
to different classes of compounds such as alkaloids,
diterpenoid, lactones, glycosides, steroids, sesquiterpenoid,
phenolics, aliphatic compounds and polysaccharides. This
plant has been used as remedy for jaundice and its extracts
and purified components have been found to have hepato-
protective effect against various toxic agents [3,4]. The crude
extract and various compounds isolated from this plant have
been reported to have several medicinal properties [5]
including immunomodulatory [6] and immunostimulatory activity
[7,8] that helps in increasing immune response by the
lymphocytic cells [9], macrophages [10] and dendritic cells [11].
Several recent reports have suggested that the plant extract is
a rich source of biochemicals that have potential therapeutic
value in treating diabetes and related disorders caused by
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disturbed carbohydrate metabolism [12–17]. Apart from this,
many previous studies have provided evidence for the
presence of adaptogenic [18], cardioprotective [19], antioxidant
[20,21] anti-inflammatory [22,23], and antipsychotic [24]
activities in this plant. Amazingly this plant shows radio-
sensitizing activity in cancerous cells [25,26] but on the other
hand protects normal cells from hazardous effects of radiations
[27,28]. The plant extract and epoxy cleordane isolated from
this plant have been shown to possess chemoprotective
potential [29–31]. Several recent studies have reported that
various extracts of Tinospora cordifolia plant possess bioactive
components which inhibit cellular proliferation in various in vitro
models and also show antineoplastic [32], antitumor [33–35],
anti-angiogenesis [36,37] and anti metastatic activity in various
in vivo models [35,37,38].

The present study was aimed to explore whether 50%
ethanolic extract of Tinospora cordifolia (TCE) exhibits potential
anti-proliferative, pro-apoptotic and anti-migratory activity along
with differentiation and senescence inducing potential in glioma
cells. N-nitrosomethyl-urea induced rat C6 glioma cell line has
been a widely accepted model for study of glioblastoma growth
and metastasis [39]. Oncogenesis and neoplasia in brain cells
including glial cells involve altered signaling cascades related
to differentiation, adhesion and apoptosis. Thus, we focussed
our study on markers related to these pathways in C6 glioma
cells following TCE treatment. Glial fibrillary acidic protein
(GFAP), an intermediate filament protein, has been well
established as a differentiation marker for glial cells in normal
brain. Further expression of senescence marker i.e., mortalin, a
highly conserved heat shock chaperon localized in different
subcellular locations, was evaluated. Mortalin has been
implicated in various functions ranging from stress response,
control of cell proliferation, and inhibition/prevention of
apoptosis [40–42], whereas, mitochondrial heat shock protein
HSP70, also known as stress response protein, is well reported
to play a vital role in critical differentiation and proliferation
stages in cells during early mammalian development [43,44].
Thus, expression of HSP70 along with plasticity markers
NCAM and its polysialylated form PSA-NCAM were evaluated
to explore their role in TCE mediated inhibition of proliferation
and rate of migration of C6 glioma cells.

NCAM, which belongs to the immunoglobulin superfamily, is
involved in multiple neuronal interactions that influence cell
migration, axonal and dendritic projection, and synaptic
targeting. It is actively involved in the process of
morphogenesis, neural cell differentiation, axonal outgrowth
and fasciculation [45]. With its three isoforms i.e., 180, 140 and
120 kDa, NCAM is not only involved in mediating signaling
pathways for neural development and plasticity but also in
oncogenesis [46,47]. The spatio-temporal pattern of expression
of PSA-NCAM, an important post translational modification of
NCAM, is not only critical for proper neural morphogenesis but
also reported to have important role in tumorigenesis and
metastasis [48–50]. Since, differentiation is accompanied by
cell cycle arrest and induction of apoptosis, we also studied
anti-apoptotic protein family molecule bcl-xl along with cyclin
D1 which is a proto-oncogene and involved in G1 to S phase
transition in cell cycle. These anti-apoptotic molecules have

been shown to play major role in cellular differentiation,
apoptosis and cell cycle [51,52]. We provide first evidence that
TCE exhibits anti-proliferative, pro-apoptotic and anti-migratory
activity in C6 glioma cells and these effects were accompanied
by induction of differentiation and senescence related
pathways.

Materials and Methods

The 50% ethanolic extract of Tinospora cordifolia stem (TCE)
was obtained from Indian Institute of Integrative Medicine,
Jammu, India. The air dried extract was reconstituted in 50%
ethanol at 100 mg/ml concentration, which was further diluted
in DMEM with 10% FBS according to experimental
requirement.

Chemical standardization of TCE and nature of active
component/s

TCE was subjected to preliminary phytochemical screening
for alkaloids, amino acids, resins, flavonoids, phytosterols,
saponins, steroids, tannins, terpenoids and reducing sugars
following the methods of Harborne [53] and Kokate [54]. The
dried 50% ethanolic extract was further fractionated with
hexane, chloroform, ethyl acetate and butanol. All the fractions
were then tested for bioactivity and bioactive fraction were
further subfractionated on TLC plate. All the subfractions were
then again tested for antiproliferative property.

Cell culture and treatment
Rat C6 glioma, U87MG human glioma, PC3 prostate cancer

cell line and HeLa cell line were obtained from National Centre
for Cell Science (Pune, India). The cells were routinely grown
in DMEM supplemented with 10% FBS (Biological Industries)
and 1X PSN mix (Invitrogen) at 37°C in a humidified
atmosphere containing 5% CO2. Cells were subcultured by
trypsinization and seeded in 96 and 24 well plates according to
the requirement of the experiments. At the confluency of
30-40%, cells were treated with TCE, ranging from
concentration 10 μg/ml to 1000 μg/ml in 96 well plates before
selection of final doses of 250 μg/ml and 350 μg/ml for further
experiments. Cultures were incubated for 72 h.

Proliferation assays
TCE was tested for anti-proliferative activity and cytotoxicity

by MTT test on C6, U87MG, PC3 and HeLa cells using the 3-
(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide
(MTT) by measuring formation of formazan crystals by
mitochondrial dehydrogenase [55].

Cellular and nuclear morphology studies
Morphological changes in glioma cells treated with different

concentrations of TCE were imaged with phase contrast
microscopy and nuclear morphology was studied by staining
with DAPI stain (4', 6-diamidino-2-phenylindole) a fluorescent
stain that specifically binds to AT rich region of DNA.

Tinospora Induces Differentiation in C6 Cells
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Process outgrowth analysis
In order to explore differentiation inducing potential of TCE,

C6 cells were studied for number and length of process
outgrowths. C6 cells were seeded in 12 well plates. After
incubation with TCE, cells were fixed with 2.5% of
glutaraldehyde for 90 min followed by washing with PBS and
staining with staining solution containing 1% toluidine blue and
1% methylene blue in 1% sodium tetra borate for 1 h. Cells
were then washed with water and kept for drying at room
temperature. Cells were photographed with Nikon Cool Snap
CCD camera. 100 cells each from control and TCE treated
groups were analysed for number and length of processes
using Image Pro Plus software version 4.5.1 from media
cybernetics.

Immunostaining
Both control and treated cells were fixed with acetone and

methanol (1:1) followed by permeabilization with 0.3% Triton-X
100 in phosphate buffered saline (0.3% PBST). Cells were
incubated with mouse monoclonal anti-GFAP (1:500), anti-
mortalin (1:500), anti-HSP70 (1:500), anti-cyclin D1 (1:250),
anti-bcl-xl (1:200), anti-NCAM (1:500) all from Sigma and anti-
PSA-NCAM (1:250) from Millipore diluted in 0.1% PBST, for 24
h at 4°C in humid chamber. For anti-PSA-NCAM staining, no
permeabilization was done. Secondary antibody (goat anti-
mouse IgG/IgM Alexaflour 488/543 from Invitrogen) was
applied for 2 h at room temperature. Cells were then mounted
with anti-fading reagent (Sigma) and images were captured by
Nikon A1R Confocal Laser Microscope and the pictures were
analyzed using NIS elements AR analysis software version
4.11.00.

Protein assay and Western blotting
C6 glioma cells, grown and treated in 100 mm petri dishes,

were harvested with PBS–EDTA (1 mM). Cell pellet was
homogenized in RIPA buffer (50 mM Tris (pH 7.5), 150 mM
NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1.0% NP-40)
and protein content in the supernatant was determined by the
Bradford method. Protein lysate (20–30 μg) was resolved in
10% and 7% gels by SDS-PAGE, followed by blot transfer onto
a PVDF membrane (Hybond-P) using the semidry Novablot
system (Amersham Pharmacia). Further, membranes were
probed with mouse monoclonal anti-GFAP (1:3000), anti-
mortalin (1:1000), anti-HSP70 (1:2500), anti-NCAM (1:2000) or
anti-PSA-NCAM (1:1000), anti-bcl-xl (1:1000) and anti-cyclin
D1 (1:2000) antibodies for overnight at 4°C. Membranes were
then washed 3 times with 0.1% TBST for 15 min each and then
incubated with HRP labelled anti mouse secondary antibody for
2 h. Immunoreactive bands were detected by ECL Plus
Western blot detection system (Amersham Biosciences) using
LAS 4000 (GE Biosciences). To rule out the possibility for
potential variations in protein estimation and sample loading,
expression of α-tubulin (endogenous control) was analysed on
the same membrane after stripping and reprobing with anti-α-
tubulin antibody. Final expression of each protein was
calculated by normalising the expression of that protein by
expression of α-tubulin in the same sample.

mRNA expression by quantitative Real Time PCR assay
Total RNA was extracted from the cells by TRI reagent

(Sigma) according to manufacturer’s instructions. Equal
amount of RNA was used for cDNA synthesis. A reaction
volume of 20 μl for cDNA synthesis containing 200 U of M-MLV
reverse transcriptase, 4 μl 5X first strand buffer, 2 μl of 1 M
DTT, 5 μg of RNA, 20 U of ribonulease inhibitor, 250 ng pd (N6)
random hexamer (Invitrogen), and 1 mM each of dNTPs
(Amersham). 100 ng of cDNA was amplified in 10 μl of reaction
mixture containing 5 μl of 2X TaqMan Master Mix, 0.5 μl of 20X
predesigned TaqMan Primer Probe mix (Applied Biosystem).
All reactions were performed in triplicate on StepOne Plus Real
Time PCR system (Applied Biosystem). Amplification
conditions comprised of initial holding stage of 50°C for 2 min
after that 95°C for 10 min, and then cycling stage comprised of
40 cycles of amplification (denaturation at 95°C for 15 sec,
further annealing and elongation at 60°C for 1 min). For each
gene of interest, 18S ribosomal RNA was used as endogenous
control. The value of each Ct was normalized by Ct value of
18S ribosomal RNA. The relative gene expression of each
gene was defined as 2-ΔΔCt and final gene expression was
represented as 2-ΔΔCt±SEM.

Annexin-V-FITC study for apoptosis
To determine whether TCE causes apoptotic and necrotic

cell death, cells were stained with annexin V conjugated with
FITC and PI using the annexin V-FITC apoptosis Detection Kit
(Miltenyi Biotech), according to the manufacturer’s protocol.
Annexin V has a high affinity for phosphatidylserine exposed
on the outer membrane of apoptotic cells, while PI is
transported to late-stage apoptotic/necrotic cells with disrupted
cell membranes. The cells from control and treated groups
were trypsinized, washed with PBS, and resuspended in 1ml of
annexin V binding buffer (1X) with addition of 10 μl annexin V-
FITC. Following incubation (for 15 min in the dark at room
temperature) and centrifugation (5 min, 300xg), 500 μl of
annexin V binding buffer and 5 μl of PI were added to the cell
pellet and incubated for further 5 min in the same conditions.
Viable (annexin V-, PI-negative), early apoptotic (annexin V-
positive, PI-negative), late apoptotic (annexin V-, PI-positive)
and necrotic (annexin V-negative, PI-positive) cells were
detected by flow cytometry (Accuri C6 flow cytometer; Becton–
Dickinson) and quantified by BD Accuri software.

Cell cycle analysis
Cells were seeded in 100 mm diameter petri plates at the cell

density 2.5x105 per ml and then grown either in the presence or
absence of TCE. After incubation of 72 h, cells were
trypsinized, collected along with floating cells and then
centrifuged at 2000 rpm. Cell pellet was resuspended in 1 ml of
ice-cold PBS and then fixed with ice-cold 70% ethanol. Cells
were centrifuged and resuspended in 1 ml of PBS and
incubated for 15 min and centrifuged and resuspended in PI
staining solution (100 mM Tris pH 7.4, 150 mM CaCl2, 0.5 mM
MgCl2, 0.1% NP-40 and 3 μM PI) and studied with BD Accuri
C6 Flow cytometer (BD Biosciences). DNA content histograms
and cell cycle phase distribution were modelled from at least
50,000 single events by excluding cell aggregates based on
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scatter plots of Fluorescence pulse area versus fluorescence
pulse width using FCS Express 4 flow research edition
software (De novo software).

Wound scratch assay
In order to investigate anti-migration potential of TCE, C6

cells were grown to confluent monolayer. Monolayer was
wounded by scratching the surface with a needle. Following the
treatment with TCE, the initial wounding and the movement of
cells in the scratched area were photographically monitored for
6 h after the treatment. Images were analysed by Image Pro
Plus software version 4.5.1 from the media cybernetics.

Gelatin zymogram study
In order to study the effect of TCE on Matrix

Metalloproteinase, samples of supernatant medium conditioned
by cell culture under different experimental conditions were
separated on a 10% SDS-PAGE containing 0.1% gelatin. After
electrophoresis, gels were washed with 2.5% Triton X-100 (in
50 mM Tris-HCl) for 30 min to remove SDS, followed by
incubating the gel in zymogram developing buffer (Invitrogen)
at 37°C for 48 h. Gels were subsequently stained with
Coomassie brilliant blue and destained in buffer containing
50% methanol and 10% acetic acid (v/v), and the location of
gelatinolytic activity was detected as clear bands.

Statistical analysis
Values were expressed as mean ± SEM. The Sigma Stat for

Windows (version 3.5) was adopted to analyze the results by
Student’s t-test and one way ANOVA, in order to determine the
significance of the means. Values of P<0.05 were considered
as statistically significant.

Results

TCE impeded proliferation rate and induced
differentiation in cancer cells

Phase contrast photomicrograph of C6, U87MG, HeLa and
PC3 cell lines cultured in the presence of different
concentrations of TCE (100-350 μg/ml) appeared to be growth
arrested and showed morphology similar to normal
differentiated cells with multiple and elongated processes.
Differentiation was observed at slightly higher concentration
(≥450 μg/ml) in case of PC3 cells. C6, U87MG and HeLa cells
showed no cytotoxicity even at higher concentration (≥500
μg/ml of TCE) though the cell number was greatly reduced and
cells appeared to be completely growth arrested (Figure 1A).
Immunostaining with α-tubulin showed that TCE treated cells
attained highly differentiated morphology with multiple and long
stellate processes and small cell body. Induction of
differentiation in C6 cells was further confirmed by the
expression of GFAP, a differentiation marker for astrocyte cells,
which was found to be enhanced significantly in TCE treated
cells in comparison to untreated cells (Figure 1B). Western blot
analysis and real time quantitative PCR data further supports
that increase in expression of GFAP in TCE treated cells

occurs both at translational as well as at transcriptional levels
(Figure 1 D and E).

Anti-proliferative effect of TCE with increasing concentration
on these cells was further confirmed by MTT assay. Cells were
treated with TCE at concentrations ranging from 10 μg/ml to
1000 μg/ml for 72 h and the cell viability was analyzed. The
IC50 (concentrations of extract leading to 50% inhibition of cell
growth) for C6, U87MG and HeLa cells was about 200 μg/ml
and for PC3 cell it was about 500 μg/ml (Figure 2A). Based on
these results, 250 μg/ml and 350 μg/ml concentration of TCE
was selected for further studies on C6 glioma cells. TCE was
further fractionated with hexane, chloroform, ethyl acetate and
butanol. Out of these fractions, hexane and chloroform
fractions were found to have anti-proliferative property in C6
glioma cells (Figure 2B). Preliminary MTT results showed that
IC50 value for hexane fraction was approximately 15 μg/ml and
for chloroform fraction 20 μg/ml. Bright field images of 1%
Toluidine Blue and 1% Methylene Blue stained cells clearly
showed highly differentiated morphology of TCE treated cells
(Figure 2C). Processes outgrowth data analysis indicated
increase in total length of processes by 74.81% in 250 μg/ml
and 84.72% in 350 μg/ml TCE treated cells as compared to
control cells (Figure 2D). Also there was significant increase in
total number of processes in 350 μg/ml TCE treated cells
(Figure 2E).

TCE induced senescence in glioblastoma cells
To explore whether TCE induces senescence in glioma cells,

we further examined TCE treated cells with well established
senescence marker mortalin, a highly conserved molecular
chaperon. Immunostaining data showed pancytoplasmic
expression of mortalin in more than 90% of cells in TCE treated
group, while in untreated cells most of the staining appeared in
perinuclear region (Figure 3A left panel). The overall
expression of mortalin was also found to be upregulated in
TCE treated cells as compared to control. It was observed that
with increasing concentration of TCE nuclear expression of
mortalin was also increased and maximum nuclear expression
was seen in 350 μg/ml concentrations. Western blot analysis of
mortalin also supported the immunostaining data (Figure 3B).
Expression of stress response protein HSP70 was also
increased significantly in TCE treated cells in comparison to
control (Figure 3A right panel). The immunostaining was further
supported by western blot hybridization results (Figure 3C).
Both mortalin and HSP70 belong to same heat shock protein
family and characteristic of cells undergoing senescence.

TCE modulated apoptosis and cell survival pathways
To elucidate whether TCE modulates signaling pathways

associated with apoptosis and cell cycle, we studied the
expression of bcl-xl and cyclin D1 in TCE treated cells. The
immunostaining of anti-apoptotic gene bcl-xl clearly depicted
significant decrease in expression in TCE treated cells (Figure
4A left panel). Western blot and mRNA analysis also supported
the immunostaining results (Figure 4B and C). To further test
whether TCE effects the expression of cell cycle regulator
proteins, cells were immunostained with cyclin D1 (Figure 4A
right panel). The results showed dose dependant decrease in
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expression of cyclin D1 in TCE treated cells. Immunostaining
data was further confirmed by western blot and mRNA
expression analysis of cyclin D1 (Figure 4D and E).

Apoptosis inducing potential of TCE was also confirmed by
Annexin V-FITC and PI staining. Mean value for early apoptotic
(72.35%) and late apoptotic (8.08%) cells in TCE treated group
were higher than their respective values in control, whereas,
viable cell number was reduced (Figure 5A and B) thus
deciphering induction of apoptosis in TCE treated cells. Further
in the line of above results, cell cycle analysis showed that TCE
inhibited cell cycle progression at G0/G1 and G2/M phase as
there was a significant increase in the mean percentage of
cells in G0/G1 and G2/M phase that was accompanied by
remarkable decrease of cells in S phase in TCE treated group
(Figure 5C).

TCE showed anti-migratory potential in C6 glioma cells
Since glioblastoma multiformae are notorious for their highly

malignant and invasive properties, we further studied

expression of cell adhesion molecule NCAM and its
polysialylated form PSA-NCAM in TCE treated and control
group (Figure 6A, left panel). Though Immunostaining and
immunoblotting data for PSA-NCAM showed significant down
regulation at translational level (Figure 6B first panel and C),
but quantitative real time PCR data showed increase in
expression of polysialyltransferase enzyme (PST) in TCE
treated cells (Figure 6D). Immunostaining and western blot
data suggested significant decrease in NCAM expression in
350 μg/ml TCE treated group (Figure 6E). Real time
quantitative PCR data confirm the down regulation in NCAM
expression also at transcriptional level (Figure 6F). To further
confirm whether differentiated glioma cells show retardation in
their migration rate, we performed wound scratch assay in
untreated and TCE treated cells. As shown in Figure 7A,
untreated cells were able to invade scratched area and fully
recolonize it within 6 h. Treatment with TCE strongly inhibited
migration of C6 cells into the scratched area and after 6 h of
treatment very few cells were seen to migrate into the

Figure 1.  TCE Induces differentiation in U87MG, HeLa, PC3 and C6 cells.  (A) Phase contrast photomicrographs of U87MG,
HeLa, PC3 and C6 cell lines treated with TCE showing gradual changes from undifferentiated to highly differentiated morphology.
Scale bar- 200 μm. (B) Confocal images of C6 glioma cells showing α-tubulin (upper panel) and GFAP (lower panel) expression.
Scale bar- 50 μm. (C) Representative western blot hybridization signals of GFAP expression. (D) Histogram showing densitometric
analysis of GFAP protein bands in western blotting in TCE treated and control groups. (E) Histograms representing mRNA
expression of GFAP in control and treated groups. Gene expression is represented by ΔΔCt value of GFAP after normalising with
18S RNA as endogenous control. Values are presented as mean ± SEM of at least three independent experiments. ‘*’ (P<0.05) and
‘**’ (p< 0.01) represent statistical significant difference between control and TCE treated groups.
doi: 10.1371/journal.pone.0078764.g001
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scratched area. Quantitative analysis further confirmed a
significant decrease (40-53%) in cell migration in C6 cells
following TCE treatment (Figure 7B). Further gelatin zymogram
analysis was performed to assess the activity of MMP-2 and 9
matrix metalloproteinases to correlate with the anti- migratory
property of TCE but no significant change was observed in the
MMP-2 and MMP-9 activities (Figure 7C).

Discussion

The idea of differentiation therapy by converting malignant
cells into normal cells was conceived by G. B. Pearce for
terato-carcinoma patients in 1961 [56]. The therapy is based on
the development of therapeutic agents that induce terminal

differentiation consequent to elimination of cancer cells.
Glioblastomas are the most common and highly invasive
primary brain tumors. Despite of availability of various radio
and chemo-therapies, most of the patients die within one year
of diagnosis. In Ayurveda, various medicinal plants have been
reported to possess anticancer properties but their mode of
action is largely unknown. Using phenotypic information of
anticancer compounds used in Ayurveda, Fauzi et al. (2012)
predicted ten most enriched targets through in silico target
prediction method that include primary targets involved in
cancer progression such as PTP1B and T-cell Protein Tyrosine
Phosphatase (TC-TCP) and synergistic targets such as efflux
pumps, P-glycoprotein, opening new avenues for Ayurvedic
drug research [57]. Tinospora cordifolia is an important

Figure 2.  TCE treatment inhibits cell proliferation and induces process outgrowth.  (Table 1) Phytochemical analysis of TCE.
(A) MTT assay showing dose dependent decrease in cell number in TCE treated U87MG, HeLa, PC3 and C6 cells. Graph showing
IC50 for U87MG, HeLa and C6 cells at 200 μg/ml and for PC3 cells at 500 μg/ml. (B) MTT assay showing the effect of hexane and
chloroform fractions on C6 glioma cells. (C) Bright field images of cells stained with 1% toluidine blue and 1% methylene blue after
fixing with glutaraldehyde. Scale bar-200 μm. (D) Histogram representing length of total and individual cell processes in TCE treated
and control cells. At least 100 cells from each sample in every experiment were counted for process outgrowth analysis. (E)
Histogram showing average of number of processes in TCE treated and untreated cells. Values are representative of mean ± SEM.
‘*’ (P<0.05) and ‘**’ (p< 0.01) represent statistical significant difference between control and TCE treated groups.
doi: 10.1371/journal.pone.0078764.g002
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component of various ayurvedic decoction used to treat
diseases of nervous system and other vital organs like liver,
pancreas and kidney. Some previous studies reported
immunomodulatory and anticancer properties in water and
ethanolic extract of Tinospora cordifolia [6,37]. The current
study provides first evidence that TCE also possesses
antiproliferative, differentiation-inducing and anti-migratory
activity in human and rat glioma cells.

Treatment of C6 glioma, U87MG, HeLa, and PC3 cells with
TCE (250 and 350 μg/ml) for 72 h significantly reduced their
rate of proliferation and Inhibition in proliferation was dose
dependent. The IC50 value for C6, U87MG and HeLa cells was
at 250 μg/ml and for PC3 cells; it was approximately 450 μg/ml,
thus suggesting that brain cancer cells are more sensitive to
TCE. Fractionation with hexane and chloroform further reduced
the effective IC50 value to about 6-10% of TCE (≈200 μg/ml).
Our lab is further continuing work on the identification and
characterization of the active components of TCE.

Tinospora cordifolia has been shown to have antiproliferative
activity in various hepato-carcinoma, lymphoma, and bone
cancer cell lines [11,30]. Anti-proliferative property of TCE may
be the result of induction of differentiation and senescence as

depicted by enhanced expression of GFAP which plays an
important role in maintaining the normal astrocyte morphology
and growth [58,59]. Upregulation of GFAP expression coupled
with morphological changes in C6 cells after TCE treatment
may suggest that TCE has differentiation inducing potential. C6
cells transfected with GFAP cDNA showed significantly
reduced tumor growth while anti-sense GFAP-transfected
astrocytoma cells showed increased invasiveness and growth
[60]. Further senescence inducing potential of TCE was
confirmed by study of heat shock family proteins, mortalin and
HSP70. Mortalin expression in perinuclear spaces in
transformed tumor cells and pancytoplasmic in normal cells
indicates the activation of senescence pathway in the TCE
treated cell. This shift of mortalin expression from perinuclear
to pancytoplasmic spaces in transformed cells has been
correlated with induction of senescence [40,61]. Consistent
with these observations, TCE treated cells showed
relocalisation of mortalin from perinuclear spaces to
pancytoplasmic space and interestingly, at higher dose there
was pronounced expression of mortalin in nucleus, which was
not observed in control and 250 μg/ml TCE treated cells. A
recent study has suggested that nuclear translocation of

Figure 3.  TCE treatment induces senescence in C6 glioma cells.  (A) Representative confocal images of C6 glioma cells
immunostained for mortalin (left panel) showing shift of immunostaining from perinuclear to pancytoplasmic and then to nucleus at
higher dose (Scale bar- 25 μm). Immunostaining of C6 cells for HSP 70 (right panel) shows differential expression of HSP70 in TCE
treated cells (Scale bar- 50 μm). (B) Representative western blot hybridization signals of mortalin. Histogram representing
percentage change in mortalin expression in TCE treated and control group. (C) Representative western blot hybridization signals of
HSP 70 expression. Histogram representing percentage change in expression of HSP 70 in TCE treated and control group. Values
are presented as mean ± SEM. ‘*’ (P<0.05) and ‘**’ (p< 0.01) represent statistical significant difference between control and TCE
treated groups.
doi: 10.1371/journal.pone.0078764.g003
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mortalin is important for neuroblastoma differentiation, where
its interaction with retinoic acid receptors (RAR and RXR) in
the nucleus, play important role in RA triggered neuronal
differentiation [62]. The enhanced expression of mortalin in
nucleus at higher dose of TCE may suggest that mortalin may
be an important target for differentiation inducing signaling
cascade by TCE. Overexpression of mortalin was also
accompanied by up regulation of another stress response
protein HSP70. HSP70 is an essential ATP-dependant
molecular chaperon and highly involved in neuronal and glial
cells differentiation and process outgrowth and it is found to be
up regulated in cells undergoing differentiation [63,64].

Further, TCE treated C6 cells showed downregulation of
cyclin D1 protein which is required for cell cycle transition from
G0/G1 to S phase [65]. It is an important CDK regulatory
molecule which plays key role in the translocation of CDK4/
CDK6 complex from cytoplasm to nucleus for the progress of
G1/S phase transition [66]. Genetic aberration and over
expression of cyclin D1 gene have been associated with higher

degree of malignancy and increased rate of cell proliferation in
several human neoplasms and glioblastomas [67,68]. A recent
study reported that in many gliobalstoma, there is suppression
of CDKN2A which results into overexpression of cyclin D1 [69],
resulting in increased invasive properties of cells and is
associated with the enhanced activity of proMMP-2 and MMP-9
[70]. Decrease in cyclin D1 expression in TCE treated cells was
followed by arrest of cell cycle progression at G0/G1 and G2/M
phase. TCE, being a multi-component system, seems to target
multiple cell cycle check points simultaneously, resulting in
higher number of cells in G0/G1 and G2/M phase and lesser
population in S phase in TCE treated group in comparison to
control. Inhibition at G1 phase and reduction in cyclin D1
expression level indicate that glioblastoma cells are undergoing
differentiation on TCE treatment. Inhibition of the G1 regulating
genes CDK4 or Cyclin D1 in glioblastoma cells may lead to the
restoration of the G1 checkpoint and subsequent glial
differentiation as the cyclin D1-cdk4 axis is the primary
gateway through which mitogenic information is channelled

Figure 4.  TCE inhibits anti-apoptosis and cell cycle promoting genes.  (A) Confocal images of immunostaining of bcl-xl (left
panel) and cell cycle regulator protein cyclin D1 (right panel) in TCE treated and untreated C6 cells (Scale bar- 50 μm). (B)
Representative western blot hybridization signals of bcl-xl (upper panel). Histogram (lower panel) representing the relative change in
expression of bcl-xl. (C) Histograms representing expression of mRNA of bcl-xl in control and treated cells. Gene expression is
represented by ΔΔCt value of bcl-xl after normalising with 18S RNA as endogenous control. (D) Representative western blot
hybridization signals of cyclin D1 in TCE treated and control group (upper panel). Histogram (lower panel) represents relative
change in expression of cyclin D1. (E) Histograms representing expression of mRNA of cyclin D1 in control and treated cells. Gene
expression is represented by ΔΔCt value of cyclin D1 after normalising with 18S RNA as endogenous control. Values are presented
as mean ± SEM of at least three independent experiments. ‘*’ (P<0.05) and ‘**’ (p< 0.01) represent statistical significant difference
between control and TCE treated groups.
doi: 10.1371/journal.pone.0078764.g004
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[71]. As cell cycle arrest is a prerequisite of differentiation, it is
reasonable to relate the role of TCE in regulating cell cycle and
leading to G0/G1 and G2/M cell cycle arrest with down-
regulation of cyclin D1 and consequently differentiation of the
C6 glioma cells.

Although glioblastoma are mostly resistant to differentiation
and hence apoptosis, but TCE treatment was observed to
downregulate the anti-apoptotic gene bcl-xl. Bcl-xl gene is
normally over expressed in tumor cells and prevents apoptosis
leading to continued cellular proliferation. This gene is also
reported to inhibit chemotherapy induced apoptosis [72].
Inhibition of bcl-xl both at transcriptional and translational levels
by TCE is in line with findings with other natural products
showing anticancer properties, like curcumin, andrographolide,
and proanthocyanidines [73,74]. Annexin V-FITC/PI staining
study further supported this observation as there was increase
in early apoptotic cell population which may be due to the
induction of differentiation in C6 glioma cells that led cells to
undergo programmed cell death.

Further, the expression of NCAM in TCE treated cells was
reduced significantly both at transcriptional and translational
levels which was further accompanied by significantly reduced
polysialylation over NCAM. The mRNA expression of PST
enzyme was found to be increased in TCE treated cells,
suggesting that downregulation of NCAM expression itself may
be the main cause of reduced glycosylation resulting in lower
expression of PSA-NCAM. NCAM is widely expressed during
embryogenesis, down-regulated in the course of differentiation
to be re-expressed during progression of some tumors [75,76].
Apart from adhesion activity, NCAM moiety is highly involved in
GDNF mediated signaling in cell migration and axonal
outgrowth and play important role during development and
injury [77]. In most of the tumors NCAM along with its
polysialylated form is found to be upregualted in tumor cells
and polysialylation of NCAM moiety was found to be decisive
for its interaction with its ligands and direct tumor growth by
controlling its heterophilic interaction [75]. Further upregulated
expression of NCAM tumor-derived endothelial cells was found

Figure 5.  TCE induces apoptosis and cell cycle arrest.  (A) Distribution of viable, early apoptotic, late apoptotic and necrotic
cells analysed by extent of expression of annexin V on the surface of cells and total PI uptake by flow cytometer. (B) Histogram
showing percentage of cells in viable, early apoptotic, late apoptotic and necrotic stages. (C) Histogram representing distribution of
cells in G0/G1, S and G2/M phase of cell cycle analysed by PI stain using flow cytometer. ‘*’ represents statistical significant
difference (p<0.05) between control and TCE treated group.
doi: 10.1371/journal.pone.0078764.g005
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to favor cellular organization into capillary like structure
indicating its role in neo-angiogenesis [78]. The reduced
expression of NCAM and PSA-NCAM may also be responsible
for inhibiting migration of glioma cells independent of MMP-2
and 9 expressions, as there was no repopulation in scratched
area in TCE treated cultures. Reduced rate of repopulation of
cells in TCE treated cultures in wound scratch assay may be
the collective outcome of differentiation, apoptosis and cell
cycle arrest which inhibited their migration as metastatic
aggressiveness of the tumor is inversely related to its
differentiation status.

Although the use of various compounds like retinoids, taxol,
paclitaxel, and PKC inhibitors have been shown to have
therapeutic potential but the very nature of glioma exhibiting
resistance against chemotherapy and radiotherapy demands

new therapeutic drugs [79]. Differentiation inducing effect of
TCE was found to be comparable to the effect of ATRA (All
Trans-Retinoic Acid) that we have used to induce differentiation
in C6 cells in our previous studies [80]. Current data suggests
that TCE may have the potential to induce differentiation in C6
glioma cells by targeting different pathways related to cell
proliferation, differentiation, senescence and ultimately
apoptosis. Further anti-migratory potential seen in cells
exposed to TCE may be helpful in controlling metastasis of
brain tumors. TCE, being multi-component system, appears to
affect multiple pathways for its anti-cancer and differentiation
inducing role in C6 glioma cells instead of targeting a single
protein or pathway. Although Tinospora cordifolia is often
recommended in Indian Ayurvedic system of medicine but the
mechanistic aspects of its beneficial effects are largely

Figure 6.  TCE reduces expression of NCAM and PSA-NCAM.  (A) Immunostaining for PSA-NCAM and NCAM in TCE treated
and untreated C6 cells (Scale bar- 25 μm). (B) Extent of glycosylation of NCAM estimation by western blot analysis using anti-PSA-
NCAM antibody (upper panel). Middle panel represents total NCAM expression. (C) Histogram representing percentage change in
expression of PSA-NCAM in TCE treated and control cells. (D) Histograms representing expression of mRNA of PST (enzyme
responsible for polysialylation of NCAM moiety) in control and treated cells. Gene expression is represented by ΔΔCt value of PST
after normalising with 18S RNA as endogenous control. (E) Histogram presenting densitometric analysis of western blot of NCAM
showing decrease in expression of NCAM in dose dependent manner in C6 glioma cells. (F) Histograms representing expression of
mRNA of NCAM in control and treated cells. Gene expression is represented by ΔΔCt value of NCAM after normalising with 18S
RNA as endogenous control. Values are presented as mean ± SEM. ‘*’ (P<0.05) and ‘**’ (p< 0.01) represent statistical significant
difference between control and TCE treated groups.
doi: 10.1371/journal.pone.0078764.g006
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unknown and also potential of its bioactive components is yet
to be recognized. Since majority of the reported differentiating
agents in glioma (including retinoids) are heat-labile and water
insoluble, so the evaluation and characterization of the
aqueous ethanolic extract and its active components for
discovery of potentially safe glioma-therapeutic phytochemicals
is highly warranted. In the light of present data that TCE
strongly inhibited proliferation and migration of glioma cells and
led cells to undergo differentiation and programmed cell death,
it is conceivable that this plant may prove to be a potential
candidate for glioblastoma therapy. Our future work will focus

on the identification of active components of TCE and search
for their potential targets in the multiple pathways observed in
the current study.
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