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Abstract Purpose: How colorectal cancer develops resistance to g-radiation is not fully understood, but
the transcription factor nuclear factor-nB (NF-nB) and NF-nB ^ regulated gene products have
been proposed as mediators. Because curcumin, a component of turmeric (Curcuma longa), has
been shown to suppress NF-nB activation, whether it can sensitize the colorectal cancer to
g-radiation was investigated in colorectal cancer xenografts in nude mice.
Experimental Design:We established HCT116 xenograft in nude mice, randomized into four
groups, and treated with vehicle (corn oil), curcumin, g-radiation, and curcumin in combination
with g-radiation. NF-nB modulation was ascertained using electrophoretic mobility shift assay
and immunohistochemistry. Markers of proliferation, angiogenesis, and invasion were monitored
by immunohistochemistry andWestern blot analysis.
Results: Curcumin significantly enhanced the efficacy of fractionated radiation therapy by
prolonging the time to tumor regrowth (P = 0.02) and by reducing the Ki-67 proliferation
index (P < 0. 001). Moreover, curcumin suppressed NF-nB activity and the expression of
NF-nB ^ regulated gene products (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis
protein-1, cyclooxygenase-2, matrixmetalloproteinase-9, and vascular endothelial growth factor),
many of which were induced by radiation therapy and mediate radioresistance.The combination
of curcumin and radiation therapy also suppressed angiogenesis, as indicated by a decrease in
vascular endothelial growth factor and microvessel density (P = 0.002 versus radiation alone).
Conclusion: Collectively, our results suggest that curcumin potentiates the antitumor effects
of radiation therapy in colorectal cancer by suppressing NF-nB and NF-nB ^ regulated gene
products, leading to inhibition of proliferation and angiogenesis.

It has been estimated that 41,420 patients will be diagnosed
with rectal cancer in 2007 in the United States (1). Most patients
with rectal cancer present with locally advanced disease, where
preoperative chemoradiation therapy is an integral component
of treatment because it reduces the risk of local recurrence and
increases the probability of sphincter-preserving surgery (2).
Unfortunately, only f20% of patients achieve complete
pathologic responses to preoperative chemoradiation therapy

mainly because of their resistance to radiation therapy (3).
Increasing this response rate with novel radiosensitization
strategies may permit selective avoidance of radical surgical
resections for a subset of patients (4). Why the response to
radiation is so limited, is not understood. The role of numerous
signaling pathways, including reactive oxygen species, cyclo-
oxygenase 2 (COX-2), phosphoinositide 3-kinase, multidrug
resistance proteins, Bcl-2, survivin, growth factors, and tran-
scription factors, such as signal transducers and activators of
transcription 3 (STAT3) and nuclear factor-nB (NF-nB), have
been implicated in radioresistance (5). Most of these pathways
have been shown to be linked with the NF-nB pathway.

Although associated with cell proliferation, invasion, angio-
genesis, and metastasis, NF-nB has been closely linked with
radioresistance in multiple tumors (6). Numerous studies
suggest that the prosurvival signaling mediated by NF-nB is
linked to radiation resistance and poorer clinical outcomes
with colorectal cancer. First, radiation therapy is known to
activate NF-nB (7–9). Second, NF-nB and NF-nB–regulated
gene products, including Bcl-xL cyclin D1, matrix metal-
loproteinase 9 (MMP-9), vascular endothelial growth factor
(VEGF), and COX-2, contribute to the development of radia-
tion resistance within tumor cells (10–16). Third, constitutive
activation of NF-nB has been observed in colorectal cancer cells
(7) but not in normal colorectal ductal epithelial cells (17, 18).
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Fourth, progressive increases in NF-nB levels correlate with
transition of normal colonic epithelial cells to adenomas, dypla-
sia, and, finally, invasive adenocarcinomas (17, 18). Therefore,
inhibition of the NF-nB pathway may inhibit the growth of
colorectal tumors and synergize with radiation therapy.

Curcumin (diferuloylmethane), a derivative of the spice
turmeric (Curcuma longa ; Fig. 1A), is known to suppress
NF-nB activation (19) and down-regulate the expression of
NF-nB–regulated gene products involved in survival (Bcl-2,
Bcl-xL, XIAP, and cIAP-1), proliferation (COX-2, cyclin D1, and
c-myc), angiogenesis (VEGF and IL-8), invasion (MMP-9), and
metastasis (ICAM-1, VCAM-1, and ELAM-1; refs. 20–22) of the
tumor. Plummer et al. showed that curcumin inhibits COX-2
expression in colon cells by inhibition of NF-nB activation via
the NIK/IKK signaling complex (23). This phytochemical has
been shown to modulate various mechanisms linked with
radioresistance, such as quenching reactive oxygen species (24),
down-regulating COX-2, multidrug resistance protein, Bcl-2,
and survivin expression (22, 25, 26), inhibiting phosphoinosi-
tide 3-kinase/AKT activation (27), suppressing growth factor
signaling pathways (28), and inhibiting signal transducers and
activators of transcription 3 activation (29). Moreover, in cur-
rent clinical trials, curcumin has been found to be pharmaco-
logically quite safe.

Whether curcumin can sensitize colorectal tumors to
radiation in vivo is not understood. In this study, we tested
this hypothesis by measuring the effect of curcumin on the
growth of colorectal cancer xenografts in nude mice exposed to
radiation. We found that curcumin sensitized colorectal cancers
to radiation by down-regulating NF-nB–regulated gene prod-
ucts, leading to inhibition of proliferation and angiogenesis.

Materials andMethods

Materials. Curcumin (77.5% curcumin; 4.21% bisdemethoxy
curcumin, 18.27% demethoxycurcumin; also called C3 complex) was
kindly supplied by Sabinsa. Polyclonal antibodies against p65
(recognizing the epitope within the NH2 terminal domain of human
NF-nB p65), ICAM-1, cyclin D1, MMP-9, survivin, cIAP-1, procaspase-3,
and procaspase-9 and monoclonal antibodies against VEGF, COX-2,
c-myc, Bcl-2, and Bcl-xL were obtained from Santa Cruz Biotechnology.
The liquid 3,3¶-diaminobenzidine + substrate chromogen system–
horseradish peroxidase used for immunohistochemistry was obtained
from DakoCytomation. Penicillin, streptomycin, DMEM/F12 medium,
and fetal bovine serum were obtained from Invitrogen. All other che-
micals were obtained from Sigma Chemicals unless otherwise stated.

Cell lines. Human colon cancer cell line HCT 116 was obtained
from the American Type Culture Collection and cultured in DMEM/F12
medium supplemented with 10% fetal bovine serum, 100 units/mL
penicillin, and 100 Ag/mL streptomycin.

Animals. Male athymic nu/nu mice (4 wk old) were obtained from
the breeding colony of the Department of Experimental Radiation
Oncology at University of Texas M. D. Anderson Cancer Center. The
animals were housed four per cage in standard mouse Plexiglas cages
in a room maintained at constant temperature and humidity under
12-h light and dark cycles and fed with regular autoclaved chow diet with
water ad libitum . None of the mice exhibited any lesions, and all were
tested pathogen free. Before initiating the experiment, we acclimatized all
mice to a pulverized diet for 3 d. Our experimental protocol was reviewed
and approved by the Institutional Animal Care and Use Committee.

Xenograft implantation of HCT 116 cells. HCT 116 cells were
harvested from subconfluent cultures after a brief exposure to 0.25%

trypsin and 0.2% EDTA. Trypsinization was stopped with medium
containing 10% fetal bovine serum. The cells were washed once in
serum-free medium and resuspended in PBS. Only suspensions
consisting of single cells with >90% viability were used for the
injections. Mice were anesthetized with ketamine-xylazine solution,
and 2 � 106 cells were injected s.c. into the right leg of each mouse
using a 27-gauge needle and a calibrated push button–controlled
dispensing device (Hamilton Syringe Company).

Experimental protocol. One week after implantation, mice were
randomized into the following treatment groups (n = 9-10) based on
the tumor volume measured by Vernier calipers: (a) untreated control
(corn oil, 100 AL daily); (b) curcumin alone (1 g/kg), once daily orally;
(c) radiation alone (4 Gy, twice weekly); and (d) combination of
curcumin (1 g/kg), once daily orally, and radiation (4 Gy, twice weekly;
given 1 h after curcumin). For irradiation, animals were anesthetized
and immobilized in the treatment position with their right legs
extended. Radiation was delivered at a dose rate of 1.25 Gy/min
through a single posterior to anterior collimated 3-cm cobalt beam with
a 5-mm bolus placed over the tumor. Tumor volume was measured at
sequential time intervals, and the final tumor volume was calculated as
V = 4/3pW2L , where W is half of the shorter axis diameter and L is half
of the longer axis diameter. The time to increase in tumor volume to
5� baseline values was estimated for each animal. The median times
and SEs were calculated for each cohort, and the various groups were
compared using unpaired Student’s t test. Mice were sacrificed, and half
of the tumor tissue was formalin-fixed and paraffin-embedded for
immunohistochemistry and routine H&E staining. The other half was
snap-frozen in liquid nitrogen and stored at -80jC. H&E staining
confirmed the presence of tumor(s) in each specimen.

NF-kB activation in colorectal tumor samples. To assess NF-nB acti-
vation, we isolated nuclei from colorectal tumor samples and carried
out electrophoretic mobility shift assays as previously described (30).

Immunolocalization of NF-kB p65, VEGF, COX-2, and MMP-9 in
tumor samples. The nuclear localization of p65, COX-2, VEGF, and
MMP-9 was examined using an immunohistochemical method
described previously (30).

Ki-67 immunohistochemistry. Frozen sections (5 Am) were stained
with anti-Ki-67 (rabbit monoclonal clone SP6, NeoMarkers) antibody
as previously described (31). Results were expressed as percentage of Ki-
67+ cells F SE per 40� magnification. A total of ten 40� fields were
examined and counted from three tumors of each of the treatment
groups. The values were initially subjected to one-way ANOVA and then
compared using unpaired Student’s t test.

Microvessel density. Frozen sections (5 Am) were fixed in cold
acetone and stained with rat anti-mouse CD31 monoclonal antibody
(PharMingen) as previously described (32). The CD31 stained slides
were observed under a Leica DM4000B fluorescence microscope
(Leica Microsystems, Inc.) equipped with SPOT-RTKE digital camera
(Diagnostic Instruments), and the images were acquired and stored
using SPOT advanced software (Diagnostic Instruments). The stored
images were processed using NIH ImageJ software. The vessel density in
each image was estimated by measuring the pixel intensity in each field
of view. The vessel density of each group was represented as intensity
per pixel. A total of 20 high power fields were examined from three
tumors of each of the treatment groups. The values were initially
subjected to one-way ANOVA and then compared using unpaired
Student’s t test.

Western blot analysis. The protein expression for bcl-2, cFLIP,
survivin, IAP1, procaspase-3, procaspase-9, COX-2, c-myc, cyclin D1,
MMP-9, and MMP-9 in colorectal tumor samples were examined by
Western blot analysis as previously described (30).

Results

The aim of the present study was to determine whether
curcumin can sensitize colorectal cancers to radiation in a
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Fig. 1. Curcumin sensitizes colorectal tumors to radiation in nude mice. A, structure of curcumin. B, schematic representation of experimental protocol described in Materials
and Methods. Group I was given corn oil (100 AL orally daily), group II with curcumin (1gm/kg orally daily), group III with g-radiation 3, 6, 8, and10 d after randomization,
and group IV with curcumin (1gm/kg orally daily) and with g-radiation 3, 6, 8, and10 d after randomization (n = 6). C, necropsy photographs of mice bearing HCT116
induced colorectal tumors on10th day (left) and the tumor volume in mice (right). Columns, mean; bars, SE.D, tumor volume measured in different time intervals using
Vernier calipers and calculated as described in Materials and Methods (n = 6; *, P < 0.001).
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mouse xenograft model and to investigate the mechanism by
which curcumin radiosensitizes this tumor.

Curcumin sensitizes colorectal cancers to radiation in vivo.
To determine whether curcumin can sensitize colorectal cancer
to radiation, we examined the effect of radiation alone, cur-
cumin alone, or in combination on the growth of subcutaneous
HCT 116 xenograft tumors (Fig. 1B). Based on tumor volume
measurements on the seventh day after tumor cell implanta-
tion, we randomized animals into four groups as described in
Materials and Methods. Curcumin treatment was initiated after
randomization and continued up to 30 days. Mice were irra-
diated twice weekly (4 Gy). All mice from the vehicle-treated
group and three mice from each of the other groups were

sacrificed on the 10th day due to excessive tumor burden and
analyzed for NF-nB and other biomarkers. Representative
images of the tumor volume at this time are illustrated in
Fig. 1C. At this early time point, the tumor volume in the
combined group was significantly lower than that in the
curcumin and control groups. Animals from the curcumin,
radiation, and combined treatment groups were sacrificed on
the 13th, 18th, and 32nd days, respectively. Growth delay after
the combined treatment was more than the sum of growth
delays caused by either alone (Fig. 1D). Normalized tumor
volume reached five times the original volume in f5 days
when mice were treated with vehicle, f6 days when treated
with curcumin, f14 days when treated with fractionated local

Fig. 2. Curcumin potentiates the effect of
radiation against tumor cell proliferation
and angiogenesis in colorectal cancer
xenograft. A, immunohistochemical analysis
of proliferation marker Ki-67 indicates
the inhibition of colorectal tumor cell
proliferation in curcumin alone or in
combination with radiation-treated groups
of animals. B, quantification of Ki-67+ cells
as described in Materials and Methods.
Columns, mean of triplicate; bars, SE.
C, immunohistochemical analysis of CD31
for microvessel density in colorectal tumors
indicates the inhibition of angiogenesis by
curcumin alone and curcumin alone and in
combinationwith radiation.D, quantification
of CD31+ microvessel density as described
in Materials and Methods. Columns, mean
of triplicate; bars, SE.
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tumor irradiation, and f23 days when treated with both
curcumin and radiation therapy (P = 0.02, compared with
radiation-only group). The enhancement factor was 2.0, as
determined by dividing the normalized tumor growth delay of
the combined groups (18 days) by the absolute tumor growth
delay of the radiation-only group (9 days).

Curcumin potentiates the effect of radiation on biomarker of
tumor cell proliferation. Proliferation of tumor cell clonogens
between radiation doses can significantly affect the overall effi-
cacy of therapy (33, 34). To explain the greater enhancement
factor for the in vivo tumor regrowth delay study than for the
in vitro clonogenic assay, we hypothesized that curcumin me-
diates its antitumor effects via inhibition of proliferation.
Therefore, we examined the expression of the cell proliferation
marker Ki-67 in tumor tissues from the four groups. The results
in Fig. 2A and B showed that the combination of curcumin with
radiation significantly down-regulated the expression of Ki-67 in
tumor tissues when compared with radiation alone (P < 0.001).

Curcumin potentiates the effect of radiation on a biomarker of
angiogenesis. The higher radiosensitization in xenografts than
in monolayer cultures when radiation therapy is combined
with other cytostatic agents has been attributed to the capacity
of these agents to inhibit angiogenesis (35, 36). We thus
analyzed the effect of curcumin on angiogenesis by examining
the expression of CD31, a marker of microvessel density. The
results in Fig. 2C and D showed that the combination of
radiation and curcumin significantly suppressed the expression
of CD31 in tumor tissues when compared with radiation alone
(P = 0.002).

Curcumin suppresses radiation-induced NF-kB activation in
the tumor. Because both proliferation and angiogenesis are
regulated by NF-nB activation (6), whether curcumin mediates
its effects through modulation of NF-nB was investigated. We
determined the nuclear levels of p65 NF-nB expression by
electrophoretic mobility shift assay in HCT 116 xenograft tissue
after treatment in all four cohorts of animals. Radiation therapy
significantly increased the activity of NF-nB, whereas concurrent
treatment with curcumin decreased this inducible NF-nB activity
to nearly baseline levels (Fig. 3A). We also determined the
nuclear levels of p65 NF-nB expression by immunohistochem-
istry. The analysis for p65 NF-nB translocation to the nucleus
showed a smaller percentage of cells positive for nuclear staining
in the combined treatment group than the radiation-alone
group (Fig. 3B). Thus, these results show that curcumin down-
regulates radiation-induced NF-nB activation in the tumor.

Curcumin down-regulates the expression of COX-2, VEGF, and
MMP-9. NF-nB is known to regulate the expression of gene
products associated with angiogenesis, invasion, metastasis,
and proliferation. Whether curcumin mediates its effects
through modulation of these gene products was investigated.
Consistent with NF-nB data, immunohistochemistry results
indicate that radiation alone induced the expression of COX-2
(Fig. 4), and curcumin suppressed both constitutive and
radiation-induced expression of COX-2 in the tumor xeno-
grafts. Our results also showed that MMP-9, a critical factor in
invasion, was induced by radiation, and curcumin suppressed
the expression quite effectively. The same was true for VEGF, a
critical factor in angiogenesis.

Curcumin down-regulates the expression of NF-kB–regulated
gene products. NF-nB regulates tumor survival through regula-
tion of expression of survivin, Bcl-2, cFLIP, and IAP-1 (37–40);

tumor cell proliferation through expression of cyclin D1 and
c-myc (41); and angiogenesis and invasion through regulation
of COX-2, VEGF, and MMP-9 (42, 43). The overexpression of
several of these products has been linked with radioresistance.
The effect of radiation and curcumin on the expression of these
gene products in the xenografts was also examined by Western
blot analysis (Fig. 5). Figure 5A clearly shows that curcumin
down-regulated constitutive expression of Bcl-2, cFLIP, survi-
vin, and IAP-1 in the tumor and down-regulated the radiation-
induced expression of these gene products and survivin.
Results in Fig. 5B show that curcumin induced the activation
of caspase-9 and caspase-3, two critical apoptosis-inducing
caspases. Consistent with immunohistochemistry data, results

Fig. 3. Curcumin inhibited radiation induced NF-nB activity in colorectal tumors.
A, detection of NF-nB by DNA binding in colorectal tumor tissue samples showed
the inhibition of NF-nB by curcumin.The numbers indicated are fold activation in
relation to humanmyeloid KBM-5 cells as one. B, immunohistochemical analysis of
nuclear p65 showed the inhibition of NF-nB by curcumin alone or in combination
with radiation. Percentage indicates p65 nuclear positive cells. Samples from three
animals in each group were analyzed, and a representative data is shown.
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in Fig. 5C indicate that the addition of curcumin suppressed
radiation-induced expression of COX-2 and curcumin. Radia-
tion-induced cyclin D1 expression, needed for the G1-S cell
cycle transition to occur, was also down-regulated by curcumin.
In addition, radiation-induced MMP-9 and VEGF were down-
regulated by curcumin (Fig. 5D).

Thus, these results suggest that curcumin may sensitize the
colorectal cancer to radiation through modulation of NF-nB–
regulated gene products in the xenograft mouse model.

Discussion

The aim of the present study was to determine whether
curcumin could sensitize colorectal tumors to radiation
therapy. Our results suggest that curcumin enhances the
antitumor effects of radiation therapy in vivo by suppressing
the NF-nB pathway, which regulates tumor survival, prolifera-
tion, invasion, and angiogenesis (see Fig. 6). Our results
indicate that curcumin inhibits the activation of NF-nB and the

Fig. 4. Curcumin down-regulated the expression of NF-nB ^ regulated gene products in colorectal tumor samples. Immunohistochemical analysis of COX-2,VEGF, and
MMP-9 showed the inhibition of COX-2,VEGF, andMMP-9 by curcumin alone or in combinationwith radiation. Percentage indicates positive staining for the given biomarker.
Samples from three animals in each group were analyzed, and a representative data is shown.
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expression of NF-nB–regulated gene products in colorectal
xenografts.

The biological response of tumors to ionizing radiation is
mediated through multiple interrelated mechanisms. One such
mechanism, the continued proliferation of tumor clonogens
that survive a dose of ionizing radiation, has been implicated in
the adverse local tumor control after treatment prolongation
and/or treatment delays during a course of fractionated radia-
tion therapy (33, 34, 44, 45). Using a spectrum of pharmaco-
logic agents, inhibition of this proliferation between treatment
fractions, otherwise known as repopulation, has been shown to
sensitize tumors to radiation therapy in preclinical models
(46–50). The magnitude of radiosensitization achieved with
an agent that influences this repopulation is expected to be
greater when multiple fractions of radiation are used. Indeed,
in the current study, the enhancement of efficacy of radiation
therapy with the addition of curcumin was more amplified in
the multifraction in vivo radiation therapy as evidenced by the
reduced proliferation index (Ki-67 staining), c-myc levels, and
cyclin D1 levels in the combined treatment group compared
with the radiation-alone group. In addition to the proliferation
index of a tumor, the composite tumor response to radiation
therapy is also influenced by the rate of tumor cell apoptosis, a
counterbalance to proliferation that reduces clonogenic bur-
den. Our results suggest that the addition of curcumin amplifies
this apoptotic response beyond that observed with radiation
alone (Fig. 5C and D).

To explain the potent radiosensitization noted in the tumor
regrowth delay assay, we also evaluated the possibility that
curcumin might inhibit mechanisms beyond merely prolifera-
tive growth inhibition and apoptosis induction. One such
mechanism is tumor angiogenesis, a host-mediated biological

process that contributes to tumor cell survival in a xenograft
microenvironment: when tumors outgrow their supply of
oxygen and nutrients, neovasculature is recruited. A spectrum
of pharmacologic agents, including antibodies, kinase inhib-
itors, and soluble VEGF receptors, in antiangiogenic therapy
have been shown to promote tumor radiosensitization (51). In
the current study, the microvessel density within xenograft
tumors in the combined treatment group was lower than that
in the radiation-alone group (Fig. 3C and D) and was asso-
ciated with a decrease in COX-2, MMP-9, and VEGF expression
(Fig. 5A and B).

Additional studies are being designed to clarify the mecha-
nism of inhibition of angiogenesis by curcumin and the
mechanism of radiosensitization by inhibition of angiogenesis
in this model. One possibility is that curcumin exerts a direct
effect on vascular endothelial cells to modulate their radio-
response. Alternatively, down-regulation of tumor cell prolifer-
ative signaling via inhibition of Akt (mediated by growth factor
receptor pathways among others) may lead to decrease in VEGF
expression. Decreased VEGF expression may lead to more
efficient oxygenation of tumors via normalization of aberrant
and leaky vascular channels within tumors and reduction in
interstitial fluid pressure (52). This reoxygenation of tumors
enhances radiosensitivity because normoxic cells are substan-
tially more sensitive to radiation-induced cell killing than
hypoxic cells (53).

Numerous cell signaling mechanisms have been implicated
in radioresistance, including reactive oxygen species, COX-2,
phosphoinositide 3-kinase, multidrug resistance proteins, Bcl-2,
survivin, growth factors, and transcription factors, such as
signal transducers and activators of transcription 3 and NF-nB
(5). Perhaps central to all these pathways is the transcription

Fig. 5. Curcumin down-regulated the
expression of NF-nB ^ regulated gene
products in colorectal tumor samples.
A,Western blot showing that curcumin and
radiation together inhibit the expression of
NF-nB ^ dependent antiapoptotic genes,
such as bcl-2, cFLIP, survivin, and IAP1in
colorectal tumor tissues. B,Western blot
showing that curcumin and radiation
together inhibit the expression of
procaspase-3 and procaspase-9 in
colorectal tumor tissues. C,Western blot
showing that curcumin and radiation
together inhibit the expression of
NF-nB ^ dependent proliferative genes, such
as COX-2, cyclin D1, and c-myc. D,Western
blot showing that curcumin and radiation
together inhibit the expression of
NF-nB ^ dependent invasive and angiogenic
gene products, such as MMP-9 andVEGF in
colorectal tumor tissues. Samples from
three animals in each group were analyzed,
and a representative data is shown.
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factor NF-nB. A common mechanism of up-regulation of the
mediators of angiogenesis and proliferation described above
occurs via activation of NF-nB, which in turn binds to the
promoters for these mediators. As described in the introduc-
tion, the biological effects of curcumin are at least partly
mediated via inhibition of NF-nB. In the current study,
inhibition of NF-nB activity and inhibition of NF-nB–regulated
gene products by curcumin were documented in vivo. Notably,
in the radiation-alone group, activation of NF-nB was docu-
mented (Fig. 4). Inducible activation of NF-nB inhibits the
apoptotic response to ionizing radiation and provides a
mechanism for tumors to evade the cytotoxicity of therapy
(54, 55). Inhibition of this pathway by curcumin could,
therefore, overcome this mechanism of inducible radioresist-
ance and enhance the efficacy of radiation therapy. Another
interesting finding was that the radiation therapy increased the
levels of COX-2 and c-myc in tumor samples. This is
particularly relevant because the expression of COX-2 is related
directly to cell proliferation, survival, metastasis, and angio-
genesis in colorectal cancers (56–58).

Our results in colorectal cancer are in accordance with reports
in other malignancies showing an increased sensitivity of

prostate and breast cancer cells in vitro to irradiation after
treatment with curcumin. The reported mechanisms of radio-
sensitization included inhibition of radiation-induced tumor
necrosis factor a activation and induction of apoptosis (59)
and inhibition of Akt-mediated inhibition of the MDM-2
oncogene (60). Similar radiosensitization has been shown
preclinically by combination radiation therapy and multiple
strategies to inhibit NF-nB, including the use of a modified
form of InBa (54, 61–63), a decoy of NF-nB (63), or
proteosome inhibitors (62).

In summary, our results suggest that curcumin enhances the
efficacy of radiation therapy for colorectal cancer. The under-
lying mechanisms by which curcumin improves radiation
response seem to be multifaceted and involve suppression of
proliferation and angiogenesis. Furthermore, the potent in vivo
radiosensitization effects of curcumin are associated with inhi-
bition of the activity of NF-nB and the expression of NF-nB–
regulated gene products that regulate proliferation, resistance to
apoptosis, angiogenesis, invasion, and metastasis. Placed in a
clinical context, several characteristics of these findings support
the investigation of the combination of radiation therapy with
curcumin in the treatment of rectal cancer: (a) the clinically
relevant dose of curcumin (1 g/kg) used in the current study
and its excellent tolerability in human subjects, even at very
high doses (64); (b) the clinical evidence that curcumin
accumulates specifically in colorectal cancers, possibly via a
combination of local absorption and systemic accumulation
(65, 66); (c) the clinical evidence that curcumin decreases the
size and number of polyps in patients with a genetic
predisposition to the development of multiple polyps at a
young age (67); and (d) the increasing recognition that
transient up-regulation of NF-nB after radiation may mediate
an inducible form of radioresistance (54). Radiation therapy
alone has been used as the preoperative treatment regimen
involving short course of high-dose radiotherapy (5Gy � 5)
followed by total mesorectal excision of the primary rectal
cancer shortly thereafter (usually within 2 weeks; ref. 68).
However, because conventional treatment of rectal cancer
involves chemoradiation therapy more often than radiation
therapy alone, the implication of these preclinical findings on
traditional rectal cancer treatment remains to be established.
Nevertheless, our results support further research on curcumin
in anticipation of future radiation therapy trials in patients with
colorectal cancer.
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