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REVIEW

Targeting Major Signaling Pathways of Bladder Cancer with Phytochemicals:
A Review

Connor Chestnuta,b, Dharmalingam Subramaniamb, Prasad Dandawateb, Subhash Padhyeb,c,
John Taylor IIIa, Scott Weirb, and Shrikant Anantb

aDepartment of Urology, University of Kansas Medical Center, Kansas City, Kansas, USA; bDepartment of Cancer Biology, University of
Kansas Medical Center, Kansas City, Kansas, USA; cInterdisciplinary Science and Technology Research Academy, University of Pune,
Pune, India

ABSTRACT
Bladder cancer is the 9th most prevalent cancer worldwide and carries a protracted treat-
ment course with significant patient expense, morbidity, and mortality. Over 95% of bladder
cancers arise from the urothelium and invade into the underlying muscle layer before meta-
stasizing. Trans-urethral resection and BCG therapy is the current first-line treatment for
non-muscle invasive bladder cancer but carries a high rate of tumor recurrence and progres-
sion. The poor outcomes associated with advanced disease indicate the urgent need for
new and improved treatment strategies. There is increasing investigation into the molecular
signaling pathways involved in bladder cancer pathogenesis with the goal of uncovering
potential therapeutic targets. This article reviews the major signaling pathways implicated in
bladder cancer, including PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, NF-jB, Wnt/b-catenin, Notch,
Hedgehog, Hippo, JAK/STAT, and TGF-b as well as major cellular receptors central to cancer
pathophysiology, including EGFR, Her2, FGFR, and VEGF. We also discuss various naturally
occurring phytochemicals that show evidence of targeting these molecular pathways includ-
ing curcumin, resveratrol, green tea polyphenols, sulforaphane, erucin, genistein, genipin,
baicalein, quercetin, isoquercitin, vitamin E, parthenolide, dioscin, triptolide, kaempferol,
pterostilbene, isoliquiritigenin, and escin. This review highlights the potential use of these
compounds in treatment of bladder cancer.
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Introduction

Bladder cancer (BC) is the 9th most common cancer
worldwide, and the 5th most common cancer in the
United States (1,2). Incidence of BC increases with
age until peaking in the 7th decade and prevalence is
four times greater in men (2,3). With a 74% 10-year
recurrence rate, BC requires lifetime surveillance and
treatments (2). In fact, BC carries the highest cumula-
tive cost per patient per lifetime of all cancers from
diagnosis to death, and is estimated to reach annual
total healthcare expenditure of five billion US dollars
by the year 2020 (4,5).

BC arises from the transitional epithelium, or uro-
thelial layer, of the bladder in approximately 95% of
cases (6). Tumors are thought to originate as noninva-
sive transitional cell carcinomas that progress to inva-
sion of the underlying detrusor muscle (6). Tumors
that have not progressed to muscle invasion are

classified as non-muscle-invasive bladder cancer
(NMIBC) and become classified as muscle-invasive
bladder cancer (MIBC) upon tumor penetration of the
muscle layer (7). Current standard of care therapy for
low and intermediate risk non-muscle-invasive blad-
der cancer (NMIBC) is trans-urethral resection of
tumor followed by intravesical instillations of Bacillus
Calmette-Guerin for up to 1-3 years post-diagnosis
(8). Unfortunately, even this regimen shows a 40% 5-
year recurrence (9,10). 20% of NMIBC cases will pro-
gress to MIBC, at which point 5-year disease-specific
survival drops from 85% to 42% (7). Management of
MIBC often includes radical cystectomy with cis-
platin-based chemotherapy in the neoadjuvant or
adjuvant setting (11,12). It is notable that this treat-
ment carries significant morbidity and adverse effects
on quality of life.

Multiple signaling pathways have been investigated
in pathogenesis of BC. Studies have demonstrated
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MAPK activation via mutation in tyrosine kinase sig-
naling pathways or Ras pathway in 85% of low-grade
NMIBC cases (13,14). Activation of the PI3K/AKT/
mTOR, Wnt/b-catenin, and NF-jB signaling pathways
have been implicated in both NMIBC and MIBC,
while VEGFR and EGFR pathways have been associ-
ated with risk of invasion and metastasis (15).
Investigating the molecular targets of bladder cancer
pathogenesis is essential to the development of novel
strategies for prevention and treatment.

The treatment of malignancy remains the greatest
challenge of modern medical science. While the
advent of conventional chemotherapy has greatly
improved our ability to treat cancer, the immense
morbidity associated with cytotoxic agents poses a sig-
nificant barrier. To circumvent this pitfall of conven-
tional therapies, cancer biologists are increasingly
investigating the hidden cures that lie in the natural
world. Investigation of phytochemicals for the treat-
ment and prevention of cancer is on the rise, ranging
from In Vitro and In Vivo investigations to epidemio-
logical studies and full clinical trials (16).

Our research groups investigate signaling pathways
key to the development, proliferation, and survival of
bladder cancer, as well as phytochemicals that target
these pathways. The purpose of this review is to sum-
marize our current understanding of the signaling path-
ways that have been implicated in bladder cancer
pathogenesis and the naturally occurring phytochemicals
that have shown promise in targeting these pathways.

Bladder Cancer Signaling Pathways

PI3K/AKT/mTOR Signaling

The phosphoinositide 3-kinase/AKT/mammalian tar-
get of rapamycin (PI3K/AKT/mTOR) signaling path-
way is central to the regulation of multiple cellular
metabolic processes, cell growth, proliferation, and
survival. The cascade initiates upon phosphorylation
of PI3K by one a multitude of receptor tyrosine kin-
ases, including endothelial growth factor receptor,
insulin-like growth factor receptor, and fibroblast
growth factor receptor (17). PI3K-induced signal
transduction is mediated by the generation of the
second messenger phosphatidylinositol (3–5)-trisphos-
phate (PIP3) through phosphorylation of the mem-
brane-bound phospholipid component PIP2 (18).
PIP3 works to recruit and activate the serine/threo-
nine kinase AKT, which is brought to the plasma
membrane. Once situated in the plasma membrane,
AKT activates several signaling cascades involved in
cellular proliferation (19). Included in these

proliferative pathways is the inhibition of proapoptotic
factor Bax, ubiquitination and degradation of the
tumor-suppressor FOXO, and activation of mTOR
(20). The activated mTOR complexes 1 and 2 phos-
phorylate numerous effectors of proliferation, most
notably p70-S6K and 4E-BP (21).

The PI3K/AKT/mTOR pathway is controlled by
several key regulatory mechanisms. mTORC1 and
p70-S6K are involved in a negative feedback loop with
PI3K and AKT, which contributes to the poor thera-
peutic efficacy of targeted inhibition of mTOR: as
mTOR levels decline, PI3K and AKT levels increase
and cross-talk with other growth pathways (22). A
second inhibitory pathway involves the tumor sup-
pressor phosphatase and tensin homolog (PTEN).
PTEN works in the cytoplasm to dephosphorylate
PIP3 and thus prevents recruitment and activation of
AKT (23). PTEN has also been shown to induce cell
cycle arrest through decreasing expression of cyclin
D1 and inhibiting phosphorylation of MAPK (24).

Several alterations in the PI3K/AKT/mTOR path-
way have been seen in bladder cancer. Loss of PTEN
pathway suppression is associated with increased mor-
tality, metastasis, and invasiveness (25). It is estimated
that as high as 30% of MIBC have either mutated
PTEN or loss of PTEN heterozygosity (26). Mutation
of the PIK3CA gene has been reported to be present
in 25% of bladder cancer cases (27). PIK3CA encodes
for the catalytic domain of PI3K, and mutation is
associated with low-grade superficial disease (28).
Increased mTOR activity is seen in 55% MIBC and is
thought to increase VEGF expression, thereby aiding
tumor growth and survival through angiogenesis
(29,30). Other mutations include TSC1, a downstream
effector of AKT, which has been reported to occur in
11.7% of bladder cancers, and AKT mutations, which
have been implicated in resistance to the tumor
necrosis factor-related apoptosis-inducing ligand
(TRAIL) pathway (31,32).

Ras/Raf/MEK/MAPK Pathway

The Ras/Raf/MEK/mitogen activated protein kinase
(MAPK) cascade is an evolutionarily conserved path-
way involved in cellular growth, differentiation, sur-
vival, and apoptosis (33). While there are six known
groups of MAPKs, the prototypical MAPK pathway is
mediated by extracellular signal-regulated kinases 1
and 2 (ERK1/2) (34). This cascade initiates with acti-
vation of Ras by a receptor tyrosine kinase (35). GTP-
bound Ras then activates the kinase Raf, which phos-
phorylates and activates MEK (35). MEK activates
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transcription factors Jun and Fos to enter the nucleus
and increase expression of genes central to cell prolif-
eration and survival (35). Two distinct MAPK path-
ways are those mediated by JNK and p38, which work
to inhibit cellular proliferation and induce apop-
tosis (36,37).

MAPK activation through either Ras or FGFR3
mutation was shown to be present in 85% of NMIBC
cases, highlighting the importance of this pathway to
the pathogenesis of bladder cancer (38). It is notable
that, while mutation of Ras and FGFR3 are mutually
exclusive events, both lead to downstream activation
of MAPK (39).

Wnt/b-Catenin Pathway

The Wnt/b-catenin pathway is highly conserved and
critical to both embryological development and car-
cinogenesis of several cancers (40). Wnt signaling reg-
ulates a multitude of cellular processes, including
motility, polarity, and stem cell renewal (40). This
pathway is initiated by Wnt binding to the membrane
receptor Frizzled, which phosphorylates and activates
the membrane-bound effector LRP. During the
inactive state, b-catenin is bound by a complex of
intracellular proteins called the destruction complex,
which mediate b-catenin ubiquitination and proteaso-
mal degradation (41). Activated LRP induces trans-
location of the destruction complex to the membrane,
where the destruction complex component Disheveled
(Dvl) prevents ubiquitination of b-catenin (41). Rising
levels of b-catenin enter the nucleus and lead to tran-
scription of genes involved in growth and prolifer-
ation (41,42).

The Wnt/b-catenin pathway was first implicated in
cancer with the discovery of the APC gene mutation
in Familial Adenomatous Polyposis(43). This pathway
has gained increased attention for BC, and may have
prognostic significance for MIBC (44). Moreover,
alteration of Wnt family molecules is observed in up
to 73% of chemotherapy naïve MIBC and high-grade
NMIBC (45). Silencing Wnt Inhibitory Factor 1
through CpG hypermethylation has been shown to
contribute to BC pathogenesis, and loss of certain
Wnt pathway inhibitors has been studied as an inde-
pendent predictor of MIBC (46). Recent studies have
shown Wnt signaling to be activated in approximately
one third of clinical samples, and that Wnt cross-talks
with the PI3K and MAPK pathways to promote
tumorigenesis (47–49).

Notch Pathway

The Notch pathway is a highly conserved signaling
pathway involved in embryonic developmental proc-
esses ranging from embryo polarity to cardiac develop-
ment (50). The Notch family includes four single-pass
transmembrane receptors referred to as NOTCH 1-4
(51). Binding of the NOTCH receptor induces cleavage
of the Notch intracellular domain (NCID) followed by
translocation to the nucleus to bind the transcription
repressor CSL. Notch/CSL signaling has been shown to
regulate several cellular proliferation pathways, includ-
ing cyclinD1, c-Myc, p21, Survivin, and NF-jB (50).
Oddly, both activation and inactivation of the Notch
pathway have been implicated in the pathogenesis of
different cancer lines (50).

The significance of the Notch pathway in BC in
controversial. The pathway has been shown to be a
tumor suppressor in BC, with one study reporting
60% of sampled bladder cancer lines possessing a loss-
of-function mutation in the Notch pathway, specific-
ally NOTCH 1 and 2 (52). Alternatively, low Notch
signaling activity has been observed to predict
increased aggressiveness of bladder cancer and wors-
ened prognosis, which is theorized to result from
increased transcription of mediators involved in epi-
thelial-mesenchymal transition (EMT) (53,54). Indeed,
suppression of Notch signaling was seen to upregulate
SNAIL, SLUG, ZEB2 and Vimentin while downregu-
lating E-cadherin. However, recent research has sug-
gested Notch signaling to have paradoxical effects in
BC. While NOTCH1 may be tumor-suppressive,
NOTCH2 may promote tumorigenesis (55). Evidence
found that NOTCH1 inhibits EMT, while NOTCH2
promotes EMT (55). In addition, NOTCH3 was
recently shown to be upregulated in BC and to be
associated with poor clinical outcomes (56). Given
this complexity, further studies are warranted to dis-
sect the individual Notch pathways.

Hedgehog Pathway

Hedgehog signaling plays a central role in embryogen-
esis and post-natal stem cell function (57). This path-
way includes the ligands Sonic Hedgehog (SHH),
Desert Hedgehog (DHH), and Indian Hedgehog
(IHH), all of which bind the transmembrane receptor
Patched (PTCH) (57). When bound, PTCH releases
its inhibition of the protein Smoothened (SMO) which
activates the GLI transcription factors to modulate
transcription of hedgehog target genes in the nucleus
(57). Shin et al showed In Vivo that cellular damage
induced SHH expression in basal stem cells of the
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urothelium (58). This event was associated with
increased Wnt signaling in stromal cells and prolifer-
ation of both urothelial and stromal cells (58).
Increased SHH expression has been observed in 96%
of NMIBC and 52% of MIBC samples (59).

Interestingly, increased expression of PTCH2 in
MIBC cell lines may reduce SHH activity (60). While
high SHH expression is a hallmark of BC stem cells,
loss of SHH may coincide with progression to invasive
disease (60). Indeed, genetic ablation of SHH in mice
demonstrated accelerated BC carcinogenesis (60). This
phenomenon was thought to result from decreased
expression BMPs, a prominent SHH target gene fam-
ily that regulates urothelial differentiation (60).

Other Signaling Pathways

Hippo Pathway

The Hippo, or MST/WW45/LATS signaling pathway
is involved in cell growth, apoptosis, and homeostasis,
and has been most studied for its role in controlling
organ size during embryonic development (61). This
pathway is composed of a core phosphorylation cas-
cade involving the protein kinases MST1/2, WW45,
and LATS1/2, and the upstream transmembrane
receptor Fat (61). The end result of this cascade is the
phosphorylation and inactivation of the anti-apoptotic
and pro-growth transcription factors yes-associated
protein (YAP) and transcriptional coactivator with
PDZ-binding motif (TAZ) (62). Increasing evidence
suggests deregulation of the Hippo pathway to be
involved in BC pathogenesis. Decreased expression of
MST1/2 and LATS1 has was observed in localized BC
cell lines, while increased expression of YAP and TAZ
was observed in high-grade and metastatic samples
(61,63). It is notable that YAP1 has been implicated as
a biomarker which indicates worsened prognosis and
chemoresistance of BC to cisplatin (64).

JAK2/STAT3 Pathway

The Janus kinase/signal transducers and activators of
transcription (JAK/STAT) pathway stimulates cell pro-
liferation, migration, apoptosis. This pathway is initi-
ated by the binding of ligands including cytokines,
interferons, and interleukins to respective cellular
receptors (65). Binding induces receptor dimerization
and subsequent transphosphorylation of associated
JAKs, which recruit STATs to the cell membrane (65).
STATs are then phosphorylated, leading to formation
of homo and heterodimers which translocate to the
nucleus (65). The JAK/STAT pathway has been shown

to interact with other cellular pathways, including the
PI3K/AKT/mTOR pathway and MAPK/ERK pathway:
activated JAKs are able to phosphorylate PI3K as well
the Grb2 effector of MAPK signaling (66).

JAK2/STAT3 activation through overexpression of
upstream Musashi-2 has been observed in 34% of BC
samples (67). Additionally, JAK2/STAT3 activity was
observed to increase migration and invasion of cancer
cells (67). STAT3 activation is suggested to be an
essential step in expression of MMP-1 following EGF
stimulation and resultant bladder tumor migration
and proliferation (68). Furthermore, a study of trans-
genic mice overexpressing STAT3 were seen to
develop invasive disease directly from carcinoma-in-
situ, suggesting STAT3’s role in tumor invasion (69).

TGF-b Signaling

Transforming growth factor-b (TGF-b) is a cytokine
that primarily functions in immunity and tissue repair
(70). While TGF-b typically serves as a tumor sup-
pressor, evidence suggests that TGF-b signaling can
undergo aberrations in cancer cells to enhance prolif-
eration, survival, and adhesion (70). TGF-b was
observed to active the mTOR pathway in BC, and
increased expression TGF-b receptors is associated
with high-grade and muscle-invasive specimens (71).
Mouse studies found ablation of TGF-b signaling to
inhibit progression and invasion, as well as reduce
EMT in bladder tumors (72).

Important Receptors of Bladder
Cancer Signaling

Epidermal Growth Factor Receptor (EGFR) and
Human Epidermal Growth Factor Receptor
2 (Her2)

EGFR and Her2 are type 1 tyrosine kinases known to
be involved in the pathogenesis of several tumor types
(73,74). Targeting these receptors has proven effective
in lung and breast cancers, but resistance is known to
develop through mutation of Ras and other down-
stream effectors (74). Analysis of clinical samples
found EGFR expression to be present in 71% of local-
ized BC and 69% of metastases, while HER2 expres-
sion was present in 83% of primary tumors and 74%
of metastasis (75). Co-expression of these receptors
was seen in more than half of all cases (75).
Expression of EGFR is an independent prognostic
indicator of high-grade BC and mortality (76,77).
Her2/neu has been observed to be associated with
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increased lymph node invasion and tumor stage, as
well as poor disease-specific survival (78).

Fibroblast Growth Factor Receptor (FGFR)

FGFR is a highly conserved receptor tyrosine kinase
family with four isotypes that mediated cellular prolif-
eration, differentiation, and apoptosis (79). FGFR1
and three are the most common isotypes to be
mutated in BC, with FGFR1 amplification occurring
in 3% of all tumors and FGFR3 mutation occurring in
50-60% NMIBC and 10-15% of MIBC (80,81). FGFR
mutation indicates better BC prognosis, with increased
survival and lower risk of recurrence and progression
(82,83). Interestingly, FGFR-mutant bladder cancer
cells are unlikely to become invasive in the absence of
co-existing deletion of CDKN2A (84). A recent phase
two clinical trial found 40% response rate of non-
resectable FGFR-positive bladder cancer tumors
treated with an FGFR inhibitor, highlighting the
potential importance of this receptor as a therapeutic
target (85).

Vascular Endothelial Growth Factor
Receptor (VEGF)

VEGF expression is a well-described mechanism of
tumor angiogenesis in BC (86). Expression of VEGF
correlates with higher grade, stage, and vascular inva-
sion of BC, as well as worsened prognosis (87,88).
VEGF has multiple functions, including inducing pro-
liferation of cancer cells in addition to its role in
angiogenesis (86). VEGF remains a potential target for
BC therapy.

Transcription Factors

NF-jB Transcription Factor

Nuclear factor-kappa B (NF-jB) is a transcription fac-
tor that has been identified in almost all cell types
since its discovery as a regulator of the jB light chain
in B lymphocytes (89). NF-jB plays a central role in
innate and adaptive immunity, and is a key pathway
induced during inflammation and hypoxia (90,91).
Inactive NF-jB exists in the cytosol as a complex with
IjB inhibitory proteins and is most often activated by
either a classical or alternative pathway (92). Classical
activation begins with stimulation of inhibitor of jB
kinase (IKK) which phosphorylates inhibitor of IjB
(IjB), causing IjB’s subsequent ubiquitin-mediated
degradation (92). This frees NF-jB to translocate to
the nucleus (92). The alternative pathway initiates

with NF-jB inducing kinase (NIK) phosphorylating
IKK and activating p100 to polyubiquitinate inhibitor
molecules (91,92). Once in the nucleus, NF-jB dimers
activate expression of target genes through direct
binding of promoter and enhancer regions (92).

The role of NF-jB in BC remains an area of active
research. BC is most often a result of chronic toxin
exposure, such as cigarette smoke and aromatic
amines (89). These exposures are thought to persist-
ently induce NF-jB and other inflammatory pathways,
thereby predisposing to cancerogenic aberrations (89).
NF-jB induces expression of several inflammatory
mediators that are linked with MIBC, such as IL-8,
IL-5, and IL-20 (89,93). NF-jB is known to increase
transcription of Major Metalloproteinases (MMP) 2
and 9, which are thought to aid metastasis and inva-
sion of bladder tumors though remodeling of the
extracellular matrix (94). MMPs are central to EMT
in cancer cells, which is characterized by the loss of
cell-cell adhesions and cell polarity of the transitional
epithelium (95). EMT has been implicated as a
required event immediately preceding bladder tumor
invasion (95). Indeed, MMP detection in the urine,
blood, and tissue is associated with high-grade, high-
risk bladder cancer (96–98).

NF-jB has was shown to increase expression of
anti-apoptotic genes after exposure to toxins, includ-
ing survivin, cIAP-1/2, and XIAP (99,100).
Additional investigation implicates NF-jB in cyclo-
oxygenase-2 (COX-2) overexpression in normal
bladder cells and tumor cells, an event associated
with increased invasion, recurrence, and poorer
prognosis (101–103).

Phytochemicals as Novel Compounds Targeting
Bladder Cancer

Phytochemical have been studied for use in various
pathologies and have garnered investigation for the
treatment of cancer. The chemical structures and nat-
ural sources of major phytochemicals that have shown
potential for the treatment of BC are presented in
Figures 1 and 2, and their targets are listed in Figure
3 and Table 1.

Curcumin

Curcumin is the primary curcuminoid of turmeric
and has been investigated for treatment of various
medical conditions (104,105). Curcumin is a polyphe-
nol and contains a b-diketone moiety that is subject
to keto� enol tautomerization, causing immense
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chemical instability (106). It composes 6% of turmeric
by weight and is a target for extensive phase I and II
metabolism (106). Curcumin has shown efficacy in
pre-clinical models of various cancer lines, including
pancreatic, colon, breast, and lung cancer (107).
Despite showing promising In Vitro results, In Vivo

activity has been limited by poor oral bioavailability
and water solubility (108). Multiple trials have
attempted to increase the oral bioavailability of curcu-
min through improved delivery mechanisms, such as
nanosuspensions, micelles, nanoparticles, and nano-
emulsions, all with only modest success (109).

Figure 1. Chemical structures of phytochemicals.
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Curcumin has been shown to suppress BC prolifer-
ation and induce apoptosis. In Vivo study observed
this to arise from decreased activity of the cyclin D1
axis and downregulation of Hippo (110). Alternatively,

In Vitro investigation showed inhibition of the PI3K/
Akt/mTOR, upregulation of PTEN, reduction in Trop2
signaling, suppression of matrix metalloproteinases, and
induction of G2/M phase arrest (111–115). Notably,

Figure 3. A pictorial representation of natural compounds targeting major bladder cancer signaling pathways.

Figure 2. Phytochemicals and their natural sources.
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one In Vitro study found curcumin to reduced prolifer-
ation of BC stem cells through suppression of Sonic
Hedgehog (116).

Curcumin has been observed to suppress and
reverse EMT. Laing and Shi both observed this to be
a result of Wnt/b-catenin modulation, while Liu and
Sun demonstrated this to result from suppression of
the ERK5/AP-1 pathway (117–120). Lastly, Laing et al.
found curcumin could protect against the develop-
ment of EMT in teratogen-exposed urothelial cells
through regulation of MAPK activity (121).

Curcumin may make epigenetic alterations to pro-
growth cell signaling pathways in BC cell lines by
decreasing expression of SP transcription-factor
repressor miRNA and possibly decreasing expression
of EGFR mRNA (122–124). Similarly, curcumin was
seen to induce apoptosis through inducing hypome-
thylation miR-203 and reducing downstream expres-
sion of the pro-growth factors Src kinase and
AKT2 (125).

Curcumin has been investigated as additive agent
to Bacillus Calmette-Guerin (BCG), the current gold
standard for NMIBC treatment. In Vivo investigation
found that BCG combined with complexed curcumin/
cyclodextrin reduced tumor size in orthotopic rat
models more than BCG treatment alone (126). BCG
therapy is thought to exert its anti-tumor effect
through induction of TRAIL in host immune cells,
which mediates cancer cell apoptosis (127). Kamat
found curcumin to have an additive effect on TRAIL
treatment of BC both In Vivo and In Vitro through
downregulation of NF-jB and upregulation of TRAIL
receptors (127). Similar In Vitro data by Jung found
curcumin to act synergistically with TRAIL via
CHOP-independent DR5 upregulation (128).

Curcumin has been investigated for augmentation
of cytotoxic agents (129). Park showed curcumin to
augment cisplatin-induced apoptosis both In Vivo and
In Vitro through induction of ROS, targeting of ERK,
and concurrent upregulation of p53 and downregula-
tion of survival proteins (130). In Vitro studies found
curcumin to augment the anti-proliferative effects of
5-flurouracil and paclitaxel (131,132).

Aside from augmentation of chemotherapeutics,
curcumin has been observed to target bladder cancer’s
multi-drug resistance (MDR) pathways. Shao demon-
strated In Vivo that the curcumin derivative bisdeme-
thoxycurcumin may prevent MDR in metastatic
bladder cancer by increasing intratumoral CD8þ T-
cell infiltration, elevating IFN-c blood level, and
decreasing intratumoral myeloid-derived suppressor
cells (133). Similarly, Zhang found combined

cisplatin/curcumin to synergistically downregulates
Keapl-Nrf2, a common MDR mechanism (134).

Resveratrol

Resveratrol is a polyphenolic compound found natur-
ally in grapes, mulberries, and peanuts (135). It has
been identified as the active agent in Itadori tea, a sta-
ple of Japanese folk medicine, and is thought to be
the ingredient of red wine which accounts for wine’s
cardioprotective effect (135,136). Resveratrol is a poly-
phenol and contains two aromatic rings connected by
a methanediyl group (137). It has a poor aqueous
solubility of 0.03mg/mL, and rat models have found
approximately 2.6% oral bioavailability with distribu-
tion of 0.2 L/h and predominate phase II hepatic
metabolism (138). Interestingly, encapsulation of
resveratrol in casein nanoparticles was shown to
increase its bioavailability to 26.5% (138).

In Vivo studies showed resveratrol to inhibit prolif-
eration and induce apoptosis of BC by decreasing
transcription of STAT3 and expression of VEGF and
FGF-2 (139,140). Interestingly, resveratrol was also
found to induce S-phase arrest through activation of
the Sirt1-p53 pathway (139). Several additional
In Vitro studies pointed to reduction of proliferation
and induction of apoptosis via inhibition of mTOR/
AKT signaling, ROS-mediated induction of cyto-
chrome C and caspase 3/9, and induction of Bcl-2
(141–144). It is notable that Stocco found resveratrol
to demonstrate dose-dependent induction of ROS at
concentrations over 20 lM, while protecting cells from
oxidative stress at levels below 20 lM, suggesting its
potential for chemoprevention (143).

Bai found resveratrol decreased adhesion, invasion,
and migration of bladder cancer cells in a dose-
depended manner (145). This was thought to occur
through decreased phosphorylation of MAPK pathway
components JNK1/2 and ERK1/2, and resultant
decreased expression of MMP-2 and MMP-9 (145).

Wang investigated resveratrol as a potential addi-
tive to Adriamycin for treatment of bladder cancer
In Vitro (116). It was found that resveratrol lowered
the IC50 of Adriamycin in MDR bladder cancer cells
through decreasing expression of MDR genes (116). A
potential barrier to use of resveratrol in treatment of
BC is its low bioavailability and rapid metabolism.
Indeed, Yang showed that the major metabolite of
resveratrol, resveratrol monosulfate, did not have any
effect on BC cell proliferation or apoptosis when used
alone (146).
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Green Tea Polyphenols

Green tea is a common drink worldwide and has
shown anti-inflammatory, anti-bacterial, and anti-oxi-
dant properties (147). Most health benefits of green
tea are attributed to the polyphenolic compound epi-
gallocatechin-3-gallate (EGCG) (148). EGCG contains
a trihydroxyphenyl B-ring which is thought to be the
source of its antioxidant properties (149). Animal
models show 26.5% oral bioavailability of EGCG,
while results in human models remain mixed
(150,151). EGCG undergoes extensive phase II hepatic
metabolism (151).

EGCG has been shown to inhibit BC proliferation
and induce apoptosis In Vivo through decreasing
phosphorylation of PI3K and AKT, as well as increas-
ing activity of pro-apoptotic proteins caspase-3 and
PARP (152). Mechanisms shown In Vitro include
CpG demethylation of promoters indicated BC growth
and decreased anti-apoptotic and heat-shock protein
expression (153–155).

Heish showed enhanced ability of EGCG to inhibit
BC tumors In Vivo through complexation with gold
nanoparticles (pNG), a strategy which has been inves-
tigated with several chemotherapeutics (156). Not only
did this study find the EGCG-pNG complex to induce
apoptosis, but the complex reduced expression of
tumor VEGF and attenuation of NK immune
cells (156).

EGCG has shown potential in reducing cancer cell
migration. In Vivo and In Vitro data showed intraves-
ical EGCG to inhibit N-cadherin, matrix metallopro-
teinases, and translocation of NF-jB (157–160).

Sulforaphane and Erucin

The isothiocyanates sulforaphane and erucin are
derived from the cruciferous vegetable family, which
includes broccoli, brussels sprouts, cabbage, cauli-
flower, collard greens, kale, and arugula (161). Two
epidemiological studies have shown significant dose-
dependent reduction in BC incidence with consump-
tion of raw cruciferous vegetables, a finding attributed
to high content of sulforaphane and erucin (162–164).
These findings were further enforced by the fact that
the anticancer benefit of cruciferous vegetable con-
sumption was not seen when vegetables were cooked,
likely due to heat-mediated reduction of isothiocyan-
ate levels (165,166). Sulforaphane has shown 37% oral
bioavailability in human models with an excretion
half-life of 2.6 h, (167). There has been minimal inves-
tigation into the pharmacokinetic properties of erucin.

Sulforaphane’s chemoprotective properties in nor-
mal urothelium has been attributed to potentiation of
nuclear factor erythroid 2–related factor 2 (Nrf2),
which induces expression of antioxidant response ele-
ments (168,169). This is mediated through inhibition
of KEAP1, a protein which mediates proteasomal deg-
radation of Nrf2 (169).

Several studies have shown sulforaphane to inhibit
bladder cancer cell proliferation and induce apoptosis.
In Vivo, Wang and Abbaoui pointed to inhibition of
the PI3K/AKT/mTOR pathway and G2/M phase cell
cycle arrest, respectively (170,171). Abbaoui attributed
G2/M phase arrest to disruption of the mitotic spindle
(171). In Vitro evidence has pointed to ROS produc-
tion and resultant cytochrome induction, G1 phase
arrest, and downregulation of NF-jB (172–174).
Notably, sulforaphane induced apoptosis through ROS
generation in treatment-resistant BC when combined
with TRAIL (175).

Sulforaphane has shown promise for preventing
EMT both In Vivo and In Vitro, through suppression
of cadherins and matrix metalloproteinases (176,177).
Two separate studies by Shan et al. showed sulfora-
phane to inhibit NF-jB and reduce COX-2, an event
associated with decreased EMT in BC (178,179).

Erucin has been shown to inhibit bladder cancer
proliferation and induce apoptosis through G2/M
phase arrest In Vivo, and inhibition of pro-growth
histone deacetylases In Vitro (168,171).

Genistein

Genistein is an isoflavone derived from soybeans that
has shown promise for treatment of prostate, breast,
colon, liver, and bladder cancers (180). Genistein has
a chemical structure similar to estradiol and has been
classified as a phytoestrogen (181). Animal models
show genistein to have 38% oral bioavailability and to
undergo predominately phase II hepatic metabolism
(181,182). In Vivo data found genistein to cause dose-
dependent inhibition of bladder cancer proliferation,
induction of apoptosis, and G2/M phase arrest (183).
It was theorized that Genistein directly inhibited DNA
topoisomerase I, as well as delayed DNA damage
repair (183).

A phase two clinical trial in pre-surgical BC
patients showed consumption genistein resulted
reduced EGFR phosphorylation in cancer cells, and
borderline significant reduction of downstream phos-
phorylated MAPK (184). However, this trial was
unable to note significant changes in tumor prolifer-
ation, apoptosis, or apoptotic-inhibiting markers.
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Genipin

Genipin is an aglycone derived from the Gardenia jas-
minoides, or cape jasmine plant, and was in used both
traditional Chinese and Ayurvedic medicine for condi-
tions ranging from fever to intestinal worms (185).
In Vivo data found that that genipin inhibits BC pro-
liferation and induces apoptosis through inhibition of
the PI3K/Akt pathway and induction of Bax and cyto-
chrome C (186). A mouse-model study showed geni-
pin potentiates cytotoxicity of cisplatin while
simultaneously reducing markers of cisplatin-induced
nephrotoxicity, suggesting the potential use of genipin
as an additive to chemotherapy (187).

Baicalein

Baicalein is a flavone derived from the herb Huang
Qin, which is used in traditional Chinese medicine as
an anti-inflammatory (188). Baicalein has been exam-
ined both In Vitro and In Vivo for treatment of blad-
der, prostate, and hepatocellular cancer (188). Wu
demonstrated In Vivo that baicalein inhibits bladder
cancer proliferation and migration in a dose-depend-
ent manner via reduction of phosphorylated NF-jB
and MMP-2/9 expression (189). In Vitro studies
pointed reduction in securin and AKT/c-H2AX sur-
vival pathways, increased ROS production, and
reduced expression of the anti-apoptotic factors Bcl-
xL, XIAP, and survivin (190–192). Baicalein has been
shown to induce G0/G1 phase arrest through PI3K/
AKT phosphorylation and increased Bax/Bcl-2 ratio,
and G2/M phase arrest through induction of p38
MAPK and inhibition of CDC2 Kinase (193–195).

Quercetin and Isoquercitin

The American Cranberry (Vaccinium macrocarpon)
has been shown to contain several bioactive phyto-
chemicals with implications for use in cancer and
other pathologies such as urinary tract infection (196).
The flavonoid quercetin has been identified as one of
the main bioactive phytochemicals found in cranber-
ries and may have therapeutic efficacy (197). In Vitro
studies have shown quercetin to target multiple
aspects of BC pathogenesis. Su et al. found quercetin
to inhibit proliferation and colony formation, induce
apoptosis, and reduce migration of cell lines through
increased phosphorylation of AMPK (198).
Additionally, Rockenbach found that quercetin could
inhibit of bladder cancer cell proliferation through
increased extracellular AMP levels and decreased
extracellular ADP levels (199). Finally, Ma showed

quercetin induced G0/G1 cycle arrest and reduced
survivin and mutant p53 (200).

Isoquercitin differs from quercetin due by the pres-
ence of a 600-OH (x-OH) group, and the two com-
pounds have been found to coexist in many natural
sources (201). In Vitro data from Chen et al. showed
isoquercitin to inhibit bladder cancer cell proliferation
as well as induce apoptosis and G1 phase arrest (202).
This was paired with decreased CDK4, CDK6 and
cyclin D1 levels, and decreased activating phosphoryl-
ation of PI3K and AKT (202). Additional In Vitro
data from Wu et al. showed isoquercitin suppresses
BC proliferation through ROS production and
increased metabolic pathway variation, leading to
destabilized lipid synthesis and altered anaerobic gly-
colysis (203).

Vitamin E

Vitamin E describes several related compounds includ-
ing tocopherols and tocotrienols (204). Vitamin E com-
pounds are most commonly found in dietary oils, such
as sunflower, safflower, and corn oil (204). A metanaly-
sis of dietary studies showed BC risk is inversely associ-
ated with consumption of a-Tocopherol, but positively
associated with c-Tocopherol, the form most com-
monly found in dietary sources of Vitamin E (205).

An In Vivo study found that a-Tocopherol and
c-Tocopherol inhibited tumor growth in xenograft
mice through decreased NF-jB nuclear translocation
(206). Notably, NF-jB activity is associated with pacli-
taxel resistance in BC, and this study found that coad-
ministration of a-Tocopherol and paclitaxel produced
greater inhibition than either compound alone (206).
While paclitaxel is known to induce G2/M phase
arrest, a-Tocopherol induced sub-G1 phase arrest,
meaning that combination therapy with these agents
could cause double checkpoint arrest in the cell
cycle (206).

In Vitro data found d-Tocotrienol inhibits bladder
cancer proliferation and induces apoptosis through
suppression of STAT3 phosphorylation (207). This
study also showed addition of d-Tocotrienol to gemci-
tabine increased induction of apoptosis and inhibition
of proliferation (207).

Parthenolide

Parthenolide occurs naturally in the feverfew herb
(Tanacetum parthenium), which has been used in
European folk medicine to treat ailments ranging
from migraine headaches to dysmenorrhea (208).
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Parthenolide is an esquiterpene lactone and has been
investigated in pre-clinical trials for treatment of both
solid and hematogenous tumors (186). Shanmugam
showed In Vivo that the water-soluble parthenolide
analogue dimethylaminoparthenolide (DMAPT) inhib-
its BC cell proliferation through induction of oxidative
stress, inhibition of NF-jB signaling, and induction of
JNK (209). Cheng et al. showed In Vitro that parthe-
nolide inhibits proliferation, induces apoptosis, and
causes G1-phase arrest in BC cell lines (210).
Western-blot analysis revealed that parthenolide
achieved these effects through PARP activation and
downregulation of Bcl-2 (210).

Other Phytochemicals

Dioscin has been found in several plants used in trad-
ition Chinese medicine, including Dioscorea nipponica
and Dioscorea zingiberensis (211). Zhou showed
In Vitro that Dioscin inhibits proliferation and indu-
ces apoptosis of BC cells through decreasing gene
methylation of DAPK-1 and RASSF-1a, mediators
involved in programmed cell death pathways (212).

Triptolide is an active compound derived from
thunder of god vine (Tripterygium wilfordii), which
has been used in traditional Chinese medicine for
treating inflammation and arthritis (213). Ho and
Yang showed In Vitro that triptolide increased cis-
platin and gemcitabine inhibition of bladder cancer
cell proliferation, colony formation, and apoptosis
(213,214). These studies showed triptolide to induce S
phase arrest via reduction in cyclin D1 and E1, and
reduction GSK3b/AKT signaling (213,214).

Kaempferol is a flavonoid found in ginger that has
gained attention for its anti-diabetic, anti-inflammatory,
and anticancer properties (215). In Vivo studies found
kaempferol to inhibit proliferation through decreasing
phosphorylation of MAPK and methylation of tumor
DNA repair loci (216,217). In Vitro, Wu showed
kaempferol inhibits proliferation and induces apoptosis
through reduction of phosphorylated AKT levels and
downregulation Cyclin D1 due to up-regulation of p21,
p27 and p38 (218). Finally, Xie suggested that the
In Vitro pro-apoptotic and anti-proliferative effects of
kaempferol arise from induction of the PTEN tumor
suppressor (219).

Pterostilbene is a phytoalexin found in blueberries,
grapes, and cranberries (220). Chen et al. showed
In Vitro that pterostilbene inhibits proliferation of
T24 bladder cancer cells, as well as induces autophagy
through inhibition of the AKT/mTOR/p70S6K

pathway and activation of the MEK/ERK1/2 path-
way (221).

Isoliquiritigenin is a flavonoid found in the root
the Glycyrrhiza uralensis plant, which is used to make
licorice (222). Si et al. showed isoliquiritigenin to
inhibit proliferation and induce apoptosis of T24 cells
In Vitro (222). These findings attributed to increased
expression of proapoptotic genes Bax, Bim, Apaf-1,
caspase-9 and caspase-3 and decreased anti-apoptotic
Bcl-2. Additional In Vitro data from Moreno-
Londono et al. showed isoliquiritigenin to prevent cis-
platin-induced cytoxicity in normal kidney tubular
cells while potentiating with cisplatin inhibition of BC
cells (223).

Escin is a mixture of triterpenoid saponins that
occurs in Aesculus hippocastanum, or the horse chest-
nut tree (224). Cheng et al. showed escin to inhibit
tumor growth in xenograft mouse models, and to
induce bladder cancer cells apoptosis through ROS
generation and cytochrome C release (225). This study
also found escin inhibits STAT3 protein expression
and reduce nuclear levels of NF-jB (225).

Conclusions and Future Directions

Bladder cancer remains one of the most common
malignancies worldwide, as well as the mostly finan-
cially costly cancer in the United States (2,5). Despite
its high morbidity, few novel therapeutics have been
discovered for treatment of bladder cancer since the
development of BCG immunotherapy over 30 years
ago (226). While NMBIC carries a relatively favorable
prognosis, MIBC and metastatic BC have an abysmal
disease-specific survival of 42% and 5% at 5 years (7).
Novel approaches to treatment of BC are clearly
needed. By identifying naturally occurring compounds
that target key pathways of BC pathogenesis such as
PI3K/Akt/mTOR, Ras/MEK/ERK MAP kinase, and
NF-jB, it is possible to tap into the hidden remedies
of nature and eliminate this highly morbid disease.
Our lab is currently investigating the potential of sev-
eral natural occurring chemicals for treatment of BC,
both as solitary agents and as combination with con-
ventional chemotherapeutics.
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