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Abstract: Despite significant advances in treatment modalities over the last decade, neither 

the incidence of the disease nor the mortality due to cancer has altered in the last thirty years. 

Available anti-cancer drugs exhibit limited efficacy, associated with severe side effects, and 

are also expensive. Thus identification of pharmacological agents that do not have these 

disadvantages is required. Curcumin, a polyphenolic compound derived from turmeric 

(Curcumin longa), is one such agent that has been extensively studied over the last three to 

four decades for its potential anti-inflammatory and/or anti-cancer effects. Curcumin has 

been found to suppress initiation, progression, and metastasis of a variety of tumors. These 

anti-cancer effects are predominantly mediated through its negative regulation of various 
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transcription factors, growth factors, inflammatory cytokines, protein kinases, and other 

oncogenic molecules. It also abrogates proliferation of cancer cells by arresting them at 

different phases of the cell cycle and/or by inducing their apoptosis. The current review 

focuses on the diverse molecular targets modulated by curcumin that contribute to its 

efficacy against various human cancers. 
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1. What Is Curcumin? 

Turmeric is a rhizome from the herb Curcuma longa Linn, which was frequently cited in ancient 

medicinal texts of Ayurveda and in traditional Chinese medicine to be useful for the prevention and cure 

of a variety of human ailments. Dried turmeric powder is also used in sub-continental cooking and is the 

main ingredient in all forms of “curry” preparations. Turmeric powder is yellow pigmented  

and has numerous curcuminoids that include curcumin (77%), demethoxycurcumin (17%), and 

bisdemethoxycurcumin (3%). Curcumin is a polyphenol (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-

heptadiene-3,5-dione). Ayurvedic medicine clearly designates curcumin as an effective medicine for 

various disorders such as asthma, bronchial hyperactivity, allergy, anorexia, coryza, cough, sinusitis, and 

hepatic disease [1]. Extensive research on curcumin over decades with approximately 6850 publications 

has provided greater insight into its medicinal and health benefits. There are many reports of its  

anti-infectious [2], anti-oxidant [3], anti-inflammatory [4,5], hepatoprotective [6], cardioprotective [7], 

thrombosuppressive [8], anti-arthritic [9], chemopreventive, and anti-carcinogenic [10–12] properties. 

Curcumin has also been shown to modulate multiple cellular molecular targets [13,14]. Several 

alternative sources of curcumin and its analogues have been reported from other Curcuma species such 

as Curcuma mangga, Curcuma zedoaria, Costus speciosus, Curcuma xanthorrhiza, Curcuma aromatic, 

Curcuma phaeocaulis, Etlingera elatior, and Zingiber cassumunar [15]. Figure 1 depicts the various 

biological sources and chemical structure of curcumin. 

2. Reported Anti-Cancer Effects of Curcumin 

Cancer is a hyper-proliferative disorder where a normal cell loses its cellular homeostasis and begins 

to constitutively activate a plethora of genes that are involved in cell cycle, invasion, survival, metastasis, 

and angiogenesis. Curcumin is also a potent anti-inflammatory compound. Based on its distinct chemical 

properties, curcumin interacts with numerous extracellular and intracellular molecules that are actively 

involved in cancer initiation and progression, thereby inhibiting cancer progression [16–19]. Increasing 

evidence suggests that deregulated inflammatory pathways play a pivotal role in a multitude of chronic 

diseases, including cancer [20]. The mechanism by which chronic inflammation drives cancer initiation 

and progression is via increased production of pro-inflammatory mediators, such as cytokines, 

chemokines, reactive oxygen species (ROS), overexpression of oncogenes, cyclooxygenase (COX-2), 

matrix metalloproteinase (MMPs), intracellular signaling pathway mediators, transcription factors such 

as nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), protein kinase 
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B (AKT), and activator protein 1 (AP1) that drive tumor cell proliferation, transformation, invasion, 

metastasis, angiogenesis, chemoresistance, and radioresistance [17,18,20–28].  

 

Figure 1. Biological sources and chemical structure of curcumin. 

Overall, the various molecular targets modulated by curcumin are summarized in Figure 2. Numerous 

studies have also reported the inhibitory effects of curcumin on almost all types of tumor cells, such as 

cancers of the reproductive, digestive, lymphatic and immune, urinary, pulmonary, nervous, skeletal 

systems, and the skin. The inhibitory concentrations of curcumin have been found to range from 1 μM 

to 100 μM in these studies [29]. 

3. Molecular Targets Modulated by Curcumin 

3.1. Transcription Factors 

3.1.1. Activator Protein (AP)-1 

The transcription factor AP-1 is known to express cancer-relevant genes that activate mitogenic,  

anti-apoptotic, and pro-angiogenic signals [30–33]. Members of the MAPK family such as ERK1/2 

phosphorylate and activate AP-1 [34], causing up-regulation of CCND1 that encodes cyclin D1 [35,36]. 
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AP-1 is often associated with tumor progression and the high levels of NF-κB and AP-1 expression seen 

in gliomas is in part responsible for increased chemoresistance and radioresistance [37].  

 

Figure 2. Molecular targets modulated by curcumin. ↓ Down-regulated targets;  

↑ Up-regulated targets. 

Curcumin has been shown to sensitize human and rat glioma cells to radiation treatment in T98G, 

U87MG, and T67 cells, and inhibit AP-1 and NF-κB signaling pathways [38]. Curcumin (20 μM) 

inhibited TPA-stimulated PKC activity in human astroglioma cells and down-regulated pro-angiogenic 

AP-1 and MMP9 [39]. In human HCT-116 colon cancer cells, curcumin (10–25 μM) inhibited PKC 

activation by inhibiting the release of Ca2+ from the endoplasmic reticulum [40,41]. In another study, 

curcumin was shown to suppress JNK activation induced by carcinogens [42]. Curcumin abrogated 

hydrogen peroxide-stimulated proliferation of LnCap prostate cancer cells through the suppression of 

AP-1 transcription factor [43]. Prusty and Das reported that curcumin down-regulated AP-1 in cervical 

cancer cells [44]. Therefore, inhibition of PKC activity by curcumin could inhibit neovascularization in 

tumors by unsettling pro-angiogenic signaling through the ERK-AP-1-MMP-9 pathway [29]. In the 

DMBA-induced hamster buccal pouch model of carcinogenesis, dietary turmeric (1%) administered  

for 12 weeks reduced the DMBA-induced tumor burden by down-regulating Ras oncogene product  

p21 [45]. Interestingly, when Hepa1–6 cells were transfected with c-Met-CAT promoter constructs and 

then stimulated with HGF, there was rapid induction of AP-1 DNA binding activity. When these cells 

were incubated with curcumin, the c-Met promoter activity was abrogated [46]. 
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3.1.2. Nuclear Factor Kappa B (NF-κB)  

Mammalian NF-κB protein comprises five different family members: NF-κB1 (p50/p105), NF-κB 2 

(p52/p100), RelA (p65), RelB, and c-Rel. All family members share the common Rel homology domain 

(RHD: 300aa), which helps in DNA binding and in interaction with IκBs, the intracellular inhibitor of 

NF-κB [22,47–49]. NF-κB can be activated by numerous agents ranging from growth factors, oxidative 

stress inducers, viruses, gram-negative bacterial products, mitogens, pro-inflammatory cytokines, and 

environmental stress factors (such as ultraviolet light, H2O2, cigarette smoke, and asbestos), 

chemotherapeutic agents, and gamma radiation [50–52]. Upon activation by pro-inflammatory 

cytokines, such as tumor-necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β), IκBs can be 

phosphorylated at two equivalent serine residues, S19 and S23, by both IKKα and β [18,47,53]. The 

phosphorylated NF-κB then migrates to the nucleus and initiates gene transcription of various oncogenic 

genes that suppress apoptosis but induce cell proliferation and transformation, invasion, metastasis, 

chemoresistance, radioresistance, and angiogenesis [22,24,50,54,55]. Interestingly, endogenous WIP1 

phosphatase was show to be a negative regulator of NF-κB [56]. The active constitutive form of NF-κB 

has been reported to occur in almost all cancers, and the ability of curcumin to suppress activation of 

NF-κB is of particular interest in cancer therapy [13,57]. 

The anti-cancer activity of curcumin was first demonstrated in the 1980’s by Kuttan and  

colleagues [58,59]. In 1995, Singh and Aggarwal showed that curcumin exhibits its anti-inflammatory 

activity by suppressing NF-κB activity [60]. Research on curcumin has significantly increased over the 

years and approximately 7000 articles have been published till date, as indicated by NIH PubMed 

database [61]. Curcumin efficiently suppressed activation of NF-κB induced by various stimuli such as 

phorbol ester, TNF-α, and hydrogen peroxide [60]. Subsequently, other researchers showed that 

curcumin inhibited the NF-κB pathway upstream kinases, IKKα and IKKβ [62,63]. In another study, 

they showed that curcumin inhibited cigarette smoke-induced NF-κB activation in human lung epithelial 

cells [64], and also inhibited constitutive activation in head and neck cancer, multiple myeloma, and 

mantle cell lymphoma [65]. Interestingly, curcumin abrogated paclitaxel-induced NF-κB activation in 

breast cancer cells and inhibited lung metastasis in a breast cancer nude mouse model [66]. Recent 

studies have shown that down-regulation of NF-κB led to suppressed expression of cyclin D1, COX-2, 

MMP9, and pro-MMP2 [67,68].  

Curcumin inhibits the Notch signaling pathway in pancreatic cancer cells [69], and has been shown 

to be a potent proteasomal inhibitor [70], inhibiting the 20S proteasome and inducing degradation of 

IκBα in colon cancers [71]. In addition, curcumin inhibited NF-κB -induced production of CXCL1 and 

CXCL2 in breast cancer cells [72]. Curcumin can abrogate NF-κB pathway in multiple cancer cells [73], 

including breast cancer [74–81], colorectal cancer [82,83], human oral squamous carcinoma [84], human 

bladder cancer [85,86], cutaneous T-cell lymphoma [87,88], pancreatic cancer [89], head and neck 

squamous cell carcinoma [90,91], adenoid cystic carcinoma [92], glioblastoma [93,94], human tongue 

squamous cell carcinoma [95], human biliary cancer [96], medulloblastoma [97], gastric cancer [98], 

lymphoma [99,100], Myeloid-derived suppressor cells [101], ovarian cancer [102], T-cell and NFAT 

activation [103], rhabdomyosarcoma [104,105], esophageal adenocarcinoma [106,107], esophageal 

squamous cell carcinoma [108,109], human epidermoid carcinoma [110], prostate cancer [111–113], 

non-Hodgkin’s lymphoma [114], Hodgkin’s lymphoma [115], human Burkitt’s lymphoma [116],  
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and thyroid carcinoma [117], exemplifying curcumin as a potential chemopreventive, oncostatic, and 

anti-metastatic agent. 

3.1.3. Peroxisome Proliferator-Associated Receptor Gamma 

Peroxisome proliferator-associated receptor gamma (PPAR-γ) is a member of the nuclear receptor 

family [118]. Activation of PPAR-γ has been identified to be involved in inducing differentiation and 

inhibiting proliferation of cancer cells [119–122]. Curcumin was reported to activate PPAR-γ and 

inhibited the growth of Moser cells, with subsequent inhibition of cyclin D1 and EGFR gene  

expression [123]. In another study, curcumin activated PPAR-γ in cholangiocarcinoma cell lines 

(KKU100, KKU-M156, and KKU-M213) and induced apoptosis in these cell lines [124]. Curcumin 

significantly inhibited proliferation in Eker rat-derived uterine leiomyoma cell lines (ELT-3) via 

activation of PPARγ, where curcumin acted as a PPARγ ligand and, in the presence of a PPARγ 

antagonist, the inhibitory effect of curcumin was reversed [125]. 

3.1.4. Signal Transducer and Activator of Transcription (STAT) 

The STAT family consists of seven members: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, 

and STAT6. They range in size from 750 to 850 amino acids [28,126,127]. Among other STAT family 

proteins, STAT3 has received considerable attention during the last decade since it is a convergent point 

for a number of oncogenic signaling pathways, and controls intra-cellular signal transduction pathways 

of several pro-inflammatory cytokines and growth factors [128,129]. STAT3 can be activated by IL-6, 

EGFR, PDGF, leukemia inhibitory factor (LIF), oncostatin M, and the ciliary neurotrophic factor 

(CNTF) family of cytokines, which are all known to mediate their signal through the gp130  

protein [130–133]. IL-6 is a key event in tumorigenesis, with high levels associated with hepatocellular 

carcinoma (HCC) [134]. 

Constitutively activated STAT3 has been implicated in multiple cancers such as head and neck  

cancer [135], leukemias [136], lymphomas [137], and multiple myeloma [138], making it a potential 

target for cancer therapy. Under normal physiological conditions, STAT3 contributes to cell survival 

and growth, and prevents apoptosis by up-regulating the expression of anti-apoptotic proteins such as 

Bcl-2 and Bcl-xL. In addition, STAT3 also activates VEGF expression thereby increasing angiogenesis. 

In a study by Bharti et al., curcumin was shown to inhibit interleukin IL-6 induced STAT3 

phosphorylation and consequent STAT3 nuclear translocation in multiple myeloma cells [138]. 

Curcumin was more efficient and more potent than the well-characterized JAK2 inhibitor AG490. In 

addition, dexamethasone-resistant multiple myeloma cells were found to be sensitive to curcumin [138]. 

In a subsequent follow-up study, Bharti et al., reconfirmed their earlier findings by testing the effect of 

curcumin on CD138+ cells derived from multiple myeloma patients. Curcumin substantially inhibited 

constitutively active STAT3 in these cells [138,139]. In primary effusion lymphoma cells, curcumin 

inhibited cell proliferation and induced caspase-dependent apoptosis in a dose-dependent manner via 

suppression of the JAK/STAT3 pathway [140]. 

In the HTLV-I-transformed T cell leukemia lines, MT-2, HuT-102, and SLB-1, which express 

constitutively phosphorylated JAK2, TYK2, STAT3, and STAT5 signaling proteins, curcumin induced 

a dose-dependent decrease in JAK and STAT phosphorylation, resulting in the induction of  
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growth-arrest and apoptosis in T cell leukemia [141]. In another study by Charkravarti et al., curcumin 

inhibited constitutive and IL-6 induced STAT3 phosphorylation in a dose and time dependent manner 

and induced apoptosis of HNSCC cells [142]. Attenuation of JAK-STAT3 phosphorylation by curcumin 

in K562 chronic leukemia cells resulted in suppression of JAK2, cyclin D1, and v-src gene  

expression [143]. In multidrug-resistant breast cancer model, MCF-7 and MCF-7R (which lacks estrogen 

receptor alpha [ERα] and overexpresses p-glycoprotein, different IAPs ([inhibitor of apoptosis proteins] 

and COX-2, curcumin inhibited cell proliferation and induced apoptosis, and the effect was more potent 

in the multidrug-resistant MCF-7R compared to its parental MCF7 cells [144]. In a Hodgkin’s lymphoma 

cell line, curcumin induced cell-cycle arrest and induced apoptosis [145]. In numerous studies using 

various cancer cell lines, curcumin was shown to inhibit cellular proliferation by down-regulating the 

JAK-STAT3 pathway in chronic lymphocytic leukemia B cells [146], human multiple myeloma U266 

cells [147], pancreatic cancer cells [148,149], ovarian and endometrial cancer cells [150,151], melanoma 

cells [152,153], cutaneous T-lymphoma cells [87], malignant gliomas [154,155], myeloid-derived 

suppressor cells [101], lung cancer [156,157], and hepatocellular carcinoma [158]. Thus, curcumin 

presents proven potential as an effective inhibitor of STAT3 phosphorylation and of downstream  

gene transcription. 

3.1.5. Wnt/β-catenin 

Signaling by Wnt glycolipoproteins is one of the fundamental mechanisms that direct cell 

proliferation and tissue homeostasis [159]. Mutations in the Wnt pathway are often linked to cancer and 

other diseases [160]. Wnt, in association with the transcriptional co-activator β-catenin, controls the 

development of gene expression programs. De-regulated Wnt/β-catenin is commonly observed in colon 

cancer [161]. Curcumin treatment inhibits both Wnt and cell-cell adhesion pathways, resulting in 

induction of apoptosis in HCT-116 colon cancer cells [162–164]. In a study using colon cancer cells, it 

was shown that curcumin suppresses the Wnt/β-catenin pathway through down-regulation of the 

transcriptional co-activator p300 [165]. In human breast cancer cells, curcumin was found to effectively 

inhibit the expression of several Wnt/β-catenin pathway components such as disheveled, beta-catenin, 

cyclin D1, and slug in both MCF-7 and MDA-MB-231 breast cancer cell lines [166]. Aberrant Wnt/β-catenin 

signaling promotes osteosarcoma tumorigenesis and metastasis. Treatment with curcumin reduced 

osteosarcoma cell proliferation, invasion and migration, and induced apoptosis by suppressing the 

Wnt/β-catenin pathway [167]. In LnCap prostate cancer cells, curcumin treatment inhibited androgen 

receptor expression and inhibited Wnt/β-catenin both in cytoplasmic as well as nuclear extracts and in 

whole cell lysates [168]. In yet another study using androgen-independent prostate cancer cells, 

curcumin was found to decrease the level of Tcf-4, CBP, and p300 proteins that are implicated in the 

Wnt transcriptional complex, leading to the decrease of ß-catenin/Tcf-4 transcriptional activity and of 

the expression of β-catenin target genes (cyclin D1 and c-myc) [169]. In another study, curcumin was 

found to negatively regulate Wnt/β-catenin pathway by activating protein kinase D1 in prostate cancer 

cells [170]. In human hepatocellular carcinoma, curcumin inhibits proliferation and induces apoptosis 

by suppressing the Wnt/β-catenin pathway [171]. In a recent study using meduloblastoma cell lines, 

attenuation of the Wnt/β-catenin pathway by curcumin was due to the suppression of nuclear β-catenin [172], 



Molecules 2015, 20 2735 

 

 

and in non-small cell lung cancer, curcumin inhibited metastasis-associated protein 1-mediated 

inactivation of the Wnt/β-catenin pathway [173]. 

3.1.6. Nrf-2 

Upon redox-dependent stimuli, the transcription factor Nrf-2-Keap interaction enables Nrf-2 to 

translocate to the nucleus and bind to the antioxidant-response element (ARE) and initiate transcription 

of genes encoding for antioxidant and detoxifying enzymes via heme oxygenase-1 (HO-1), NADPH 

quinone oxidoreductase-1, and glutathione [174,175]. Several strategies for induction of Nrf-2 activity 

to prevent cancer development have been employed over the last couple of years [176]. Curcumin 

treatment was shown to increase the expression of transcription factor Nrf-2, a key transcriptional 

regulator of antioxidant and detoxifying enzymes in renal epithelial cells [177]. Nrf-2 has been shown 

to be necessary for the up-regulation of genes involved in oxidative stress, such as glutathione  

S-transferase superoxide dismutase-containing ARE [178]. Curcumin activates ARE-mediated gene 

expression in human monocytes via PKC delta, upstream of p38 and Nrf-2 [179]. 

In human hepatocytes, curcumin induced ROS generation, activated Nrf-2 and MAP kinases, 

inhibited phosphatase activity in hepatocytes and induced HO-1 [180]. Curcumin showed 

chemopreventive effect against prostate cancer in TRAMP C1 cells through epigenetic modification of 

the Nrf-2 gene, with subsequent induction of the Nrf-2-mediated anti-oxidative stress cellular defense 

pathway [181]. Over-expression of Flap endonuclease 1 (Fen1), a DNA repair-specific nuclease, is 

involved in the development of breast cancer. In another recent study, Chen et al., recently showed that 

curcumin can inhibit breast cancer cell proliferation through Nrf-2 mediated down-regulation of FEN-1 

expression [182]. 

3.1.7. Pro-Inflammatory Cytokines 

Tumor Necrosis Factor-alpha (TNF-α) and Interleukins 

TNF-α has been shown to mediate tumor initiation, promotion, and metastasis [183,184]. The  

pro-inflammatory effects of TNF-α are due primarily to its ability to activate NF-κB. Almost all cell 

types, when exposed to TNF-α, activate NF-κB, leading to expression of inflammatory genes such as 

COX-2, 5-LOX, cell adhesion molecules, inflammatory cytokines, chemokines, and inducible nitric 

oxide synthase [185]. TNF-α also functions as a growth factor for most tumor cells [186,187]. Curcumin 

suppresses the expression of TNF-α at both the transcriptional and post-transcriptional levels. TNF-α 

increased the expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion 

molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (ELAM-1) in human umbilical 

vein endothelial cells. Pre-treatment with curcumin inhibited the TNF-α induced adhesion of monocytes 

to vascular endothelial cells [188]. Curcumin (10 and 100 micromol/l) inhibited TNF-α secretion from 

trypsin or activating peptide-stimulated human leukemic mast cells [189]. The combination of curcumin 

and sulforaphane inhibited the inflammatory markers iNOS, COX-2, prostaglandin E2 (PGE2), TNF-α, 

and interleukin-1 (IL-1) [190]. In another study, curcumin was shown to down-regulate the expression 

of TNF-α mRNA in K562 leukemia cells [191]. 
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In an orthotopic mouse model of lung cancer using intravenously injected Lewis lung carcinoma 

(LLC) cells, 5% w/w dietary curcumin exerted physiological changes in lung tissues by significantly 

decreasing LPS-induced TNF-α production in lungs [192]. Orally bioavailable curcumin blocks TNF-α 

action and secretion in in vitro models, in animal models, and in humans [193]. In breast epithelial and 

breast cancer cells, curcumin reversed TNF-α induced Warburg-like metabolism [194]. The anti-cancer 

effect of curcumin against lymphoma has been reported previously. However, in this study they reported 

that long-term use of curcumin may attenuate cancer progression via the down-regulation of TNF-α and 

of IL-6 modulated by E26 transformation-specific protein (ETS) and NF-κB [195]. In general, various 

plant-derived polyphenols were shown to suppress TNF-α activated inflammatory pathways in both  

in vitro and in vivo models of cancer [196]. Curcumin can inhibit the expression of both TNF-α mRNA 

and TNF-α protein in mantle cell lymphoma cell lines. Suppression of TNF-α by curcumin led to the 

abrogation of NF-κB activation and cell proliferation, as was the case when TNF-α secretion was 

neutralized using an anti- TNF-α antibody [65]. Curcumin prevented both cadmium-induced IL-6 and 

IL-8 secretion by human airway epithelial cells [197]. 

3.1.8. Inflammatory Enzymes 

Inducible Nitric Oxide Synthase (iNOS), Cyclooxygenase-2 (COX-2), Lipooxygenase (LOX) 

COX-2, LOX, and iNOS are important enzymes that mediate inflammatory processes. Curcumin is a 

known, potent anti-inflammatory agent that prevents tumor progression and exerts chemopreventive 

effects on carcinogenesis [198,199]. Inducible nitric oxide synthase (iNOS) is an inflammation-induced 

enzyme that catalyzes the production of nitric oxide (NO), a molecule that may lead to carcinogenesis. 

Curcumin inhibited iNOS expression in ex vivo cultured BALB/c mouse peritoneal macrophages in a 

concentration-dependent manner [200]. Curcumin suppressed lipopolysaccharide (LPS)-induced 

expression of iNOS and COX-2 and prevented colon carcinogenesis [201]. Curcumin reduced 

cholangiocarcinogenesis in hamsters via reduction in the expression of pro-inflammatory proteins such 

as COX-2 and iNOS [124]. In combination with polyunsaturated fatty acids, curcumin produced a 

synergistic effect and inhibited the proliferation of RAW 264.7 macrophages by suppressing iNOS, 

COX-2, 5-lipoxygenase (5-LOX), and cPLA(2) [202]. 

3.1.9. Oncogenic Kinases 

Functional activation of key protein kinases, including IκB kinases and mitogen-activated protein 

kinases (MAPKs) such as p38 MAPK, JNK1/2, and extracellular signal-regulated kinase 1/2 (ERK1/2), 

all of which are involved in activating key transcription factors such as NF-κB and AP-1, serve as 

important target molecules for cancer prevention and therapy [203]. Protein kinases and growth factors 

are also targets of curcumin, which has been shown to down-regulate the activity of ERK1/2 in 

pancreatic and lung adenocarcinoma cells [204]. Curcumin has also been shown to inhibit the PI3 

kinase/AKT pathway in malignant glioma cells [205]. Curcumin inhibits a plethora of kinases including 

phosphorylase kinase, protein kinase C, protamine kinase, auto-phosphorylation-activated protein 

kinase, and pp60c-src tyrosine kinase [13,18]. Curcumin-induced apoptosis of neutrophils was mediated 

via activation of p38 MAPK and induction of caspase-3 [206]. In experimental colitis, curcumin 
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inhibited p38 MAPK [207]. In another study by Chen et al., curcumin suppressed JNK activation 

induced by various stimulants such as ionomycin, anisomycin, phorbolmyristate acetate, γ-radiation, 

TNF-α, UV-C, and sodium orthovanadate [42]. 

3.2. Growth Factor Induced Signaling Cascades 

ErbB-2 (avian erythroblastosis oncogene B) or HER2/neu is a member of the epidermal growth factor 

receptor (EGFR) family and plays an important role in the pathogenesis of breast cancer. It is a cell 

membrane tyrosine kinase receptor that binds to growth factors and mediates cell proliferation and 

differentiation. HER2/neu is over-expressed in breast cancer [208], and both HER2 and EGF receptors 

stimulate proliferation of breast cancer cells. Curcumin suppressed EGFR signaling in prostate cancer 

cells by inhibiting ligand-induced activation of EGFR and its intrinsic tyrosine kinase activity [209]. In 

colorectal cancer cells, Caco-2 and HT-29, curcumin down-regulated the transcription factor, Egr1, and 

the expression of EGFR, thereby inhibiting colorectal cancer cell growth [10]. In non-small cell lung 

cancer (NSCLC), activating mutations of EGFR are responsive to erlotinib, an EGFR antagonist, while 

somatic mutations of EGFR are non-responsive. Curcumin significantly increased the cytotoxicity of 

erlotinib -resistant H1975 and H1650 NSCLC cells, and enhanced erlotinib-induced apoptosis,  

down-regulated the expression of EGFR, p-EGFR, and survivin in erlotinib-resistant NSCLC cells [210]. 

Curcumin improved the efficiency of gefitinib in the drug-resistant NSCLC cells both in vitro and  

in vivo by inducing EGFR degradation and modulating p38 activation [211]. In another study using 

human bronchial epithelial (HBE) Beas-2B cells and lung cancer A549 cells, curcumin decreased EGFR 

expression [212]. Curcumin modulated the migratory and invasive ability of the highly metastatic mouse 

hepatoma Hca-F cells, through a novel mechanism involving inactivation of Cav-1 and EGFR signaling 

pathways [213]. Curcumin was shown to inhibit functional interaction between integrin α6β4 and growth 

factor receptor, EGFR, a key event in breast carcinoma cell motility and invasion [214]. In colon cancer 

cells treated with 5-FU plus oxaliplatin (FOLFOX), the addition of curcumin down-regulated activation 

of EGFR, HER-2, IGF-1R, and AKT [215,216]. Curcumin attenuated EGF-induced aquaporin water 

channels in cells from the human ovarian cancer cell line, CaOV3, and thereby inhibiting cell migration 

and metastatic potential [217]. 

3.3. Other Protein Kinases and Inflammatory Mediators 

3.3.1. Cyclin D1 

Cyclin D1 is a subunit of Cdk4 and Cdk6, and is over-expressed in a multitude of cancers such as 

lung, liver, head and neck, prostate, breast, colon, and multiple myeloma cells [13]. The expression of 

cyclin D1 is mainly controlled through the NF-κB pathway. Suppression of the NF-κB pathway leads to 

suppression of cell cycle progression mediated by cyclin D1. Curcumin was shown to down-regulate 

cyclin D1 [218]. Curcumin inhibited cell proliferation and induced G2/M cell cycle arrest in HCT-116 

cells. Immunoblotting analysis showed that cyclin D and E levels declined while cyclin B levels were 

unchanged. Curcumin inhibited cell proliferation and induced G2/M arrest in HCT-116 cells. 

Investigation of the levels of cyclins E, D, and B by immunoblotting analysis showed that cyclin B level 

was unaffected, whereas cyclin D and E levels declined with curcumin treatment [219]. In immortalized 
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human endothelial-like cells (ECV304), curcumin inhibited cell proliferation and induced G0/G1 and/or 

G2/M phase cell cycle arrest, up-regulated cyclin-dependent kinases, p21WAF1/CIP1, p27KIP1, and 

p53, and slightly down-regulated cyclin B1 and cdc2 [220]. 

Curcumin can also down-regulate p21WAF1/CIP1 expression in prostate cancer cells [221]. In four 

MYCN-amplified neuroblastoma cell lines, with wild-type or mutant p53, curcumin induced 

p21WAF1/CIP1 [222]. In another study, curcumin was reported to up-regulate cyclin dependent kinase 

inhibitors p21 and p27 in multiple tumor cell lines [16]. Moreover, Schaaf et al., (2009) found that 

curcumin suppressed the proliferation of 25 human pituitary adenocarcinoma cells by inhibiting cyclin 

D1 and cyclin-dependent kinase 4 and induced G2/M cell cycle arrest [223]. Curcumin enhanced the 

anti-proliferative effect of mitomycin C and induced cell cycle arrest, inhibited cyclin D1, cyclin E, 

cyclin A, cyclin-dependent kinase 2 (CDK2) and CDK4, along with the induction of the cell cycle 

inhibitors p21 and p27 in MCF-7 cells [224]. In lung cancer cells, curcumin treatment inhibited cell 

proliferation, which was associated with up-regulation of p27 and p21, and down-regulation of cyclin 

D1 [225]. 

3.3.2. p53 

p53 inactivation and NF-κB activation are commonly observed in a variety of cancers and play an 

important role in cancer progression [226,227]. It has been shown that curcumin possesses dual activities 

such as activation of p53 and inhibition of NF-κB thereby inducing apoptosis. Curcumin induces  

p53-dependent apoptosis in basal cell carcinoma [228]. Zheng et al., showed that, curcumin  

up-regulated p53 in human melanoma cells [68]. In the breast cancer cell line MCF7, curcumin-induced 

apoptosis was accompanied by an increase in p53 level, increased DNA-binding activity, and delayed 

increase in the effector Bax expression [229]. In a neuroblastoma cell line, curcumin treatment 

transiently up-regulated p53 expression and induced nuclear translocation of p53, followed by induction 

of p21 (WAF-1/CIP-1) and Bax expression [222]. In mammary epithelial carcinoma cells, curcumin was 

reported to induce apoptosis by up-regulating p53 [230]. Curcumin up-regulated p53 in HT-29 colon 

cancer cells [231], and, in combination with oxaliplatin, produced a 16-fold induction of p53 protein in 

both p53wt and p53 mutant colorectal tumors [232]. Curcumin also enhanced expression of p53 

molecule in tumor tissue, and modulated the apoptotic pathway in colorectal cancer cells [233], ovarian 

cancer [234], cisplatin-resistant ovarian cancer [235] and induced the expression of FOXO3a and p53 in 

nasopharyngeal carcinoma [236] by serine phosphorylation of p53 in a concentration- and time-dependent 

manner. Interestingly, curcumin down-regulated MDM2 independently of p53 in PC3 prostate cancer 

cells [237], while it was shown to up-regulate p53 protein expression in LnCap prostate cancer cells [238]. 

Curcumin induced apoptosis of human glioma cells in a p53-dependent manner followed by induction 

of p21 WAF-1/CIP-1 and ING4 [239]. In another study using human leukemia cells, curcumin-induced 

apoptosis was mediated by up-regulation of p53 and prolonged the life span of tumor bearing mice [240]. 

In bile duct cancer, curcumin increased p53 and Bax protein levels and was associated with marked 

oxidative stress and apoptosis [241]. In human renal carcinoma Caki cells, curcumin enhanced dual 

PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis through p53-dependent Bcl-2 mRNA 

down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional 

level [242]. Similarly, a small molecule compound nutlin-3 showed dual activity by simultaneously 
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activating p53 and suppressing NF-κB [243]. Interestingly, curcumin was found to down-regulate p53 

expression in lung cancer cells and induced apoptosis independent of p53 [244]. Bush JA et al., (2001) 

reported a different mechanism of action of curcumin. In their study, they showed that curcumin induced 

apoptosis in human melanoma cells through the Fas/caspase-8 pathway independent of p53, and also that 

curcumin did not induce p53 in these cells [245]. In both MDA-MB-231 breast cancer cells [246], and in 

HCT-15 colorectal cancer cell line, curcumin was found to down-regulate p53 expression [247]. Curcumin 

induced p53-independent apoptosis in ovarian carcinoma cells that involved p38 MAPK activation [248]. 

Another study demonstrated that when curcumin was used in combination with trichostatin,  

it down-regulated p53 expression in breast cancer cells [249]. These contrasting effects of activation or 

suppression of p53 in various cancer cells by curcumin warrant further investigation. 

3.3.3. Adhesion Molecules 

Leukocyte recruitment by endothelial cells and their following movement from the vasculature into 

the tissue play major roles in inflammation-driven cancers. Treatment of vascular endothelial cells with 

TNF-α induced adhesion of monocytes to the vasculature due to increased expression of intracellular 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial 

leukocyte adhesion molecule-1 (ELAM-1). Pre-treatment of vascular cells with curcumin inhibited 

monocyte adhesion with a concomitant decrease in ICAM-1, VCAM-1, and ELAM-1 expression, and 

inhibited cellular migration and invasion of SK-Hep-1 hepatocarcinoma cells [188,250] and small cell 

lung cancer cells [157]. Matrix metalloproteinases (MMPs) are metal-dependent endopeptidases capable 

of degrading components of the extracellular matrix. MMPs are involved in chronic diseases such as 

cancers [251]. In human non-small cell lung carcinoma cells, curcumin suppressed cigarette  

smoke-induced MMP9 secretion by inhibiting the NF-κB pathway [64]. Curcumin also inhibited MMP9 

in a variety of cancers such as prostate cancer [113], colon cancer [252], human promyelocytic  

leukemia [253], breast cancer [254], human laryngeal squamous carcinoma [255], metastatic colorectal 

cancer [256], U373 cells [257], lung cancer [258,259], nasopharyngeal carcinoma [260] and liver 

metastasis from colorectal cancer [261]. 

3.4. In Vivo Studies 

Curcumin has been tested in numerous animal models of cancer and on almost all types of  

organ-specific cancers, including breast [262,263], oral [264], head and neck [265,266], hepatocellular 

carcinoma [267], pancreatic [268,269], prostate [270–272], colon [273,274], gastric [275], as well as 

multi-drug resistant cancer cells [276], cancer stem cells [277], and in a variety of other cancers as well 

as in chemoprevention, and chemoresistance [17,278–283]. The in vivo molecular targets of curcumin 

have been excellently reviewed previously [284–288]. Figure 3 clearly illustrates the potential role of 

curcumin in negatively regulation tumor initiation, progression and metastasis. 
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Figure 3. Potential anti-cancer functions of curcumin. 

3.5. Clinical Trials with Curcumin 

Curcumin as a therapeutic has been used for thousands of years but it was not until 1937 that 

Oppenheimer carried out the first clinical trial of curcumin against cholecystitis [61]. However, it was 

not until 1987 that the anti-cancer property of curcumin was evidenced by Kuttan et al. [59], where 

topical application of curcumin proved to be effective against external cancerous lesions. The 

multifaceted role of curcumin has been demonstrated in various human clinical trials over the past 

quarter century against many diseases including cancer, cardiovascular disease, diabetes, oral lichen 

planus, arthritis, and β-thalassemia. In particularly, the anti-cancer potential of curcumin has been 

successfully exhibited in various types of cancers namely oral, lung, breast, prostate, pancreatic, 

colorectal, multiple myeloma and head and neck squamous cell carcinoma. With safety and efficacy 

proven in more than 65 clinical trials and an additional 35 on-going trials [193], the use of curcumin as 

a supplement has already been approved in many countries such as the USA, South Africa, India, Nepal, 

Pakistan, Japan, Korea, China, Thailand, and Turkey. In an attempt to increase its bioavailability, several 

curcumin formulations have been developed such as powder, tablets, capsules, liposomal encapsulation, 

emulsions, and nanoparticles [289–291]. Apart from being effective by itself, curcumin also functions 

excellently in combination with various other compounds, such as docetaxel, acetylcysteine, 

gemcitabine, mesalamine, sulfasalazine, quercetin, pantoprazole, prednisone, bioperine, piperine, 

lactoferrin, and soy isoflavones [193]. Interestingly, the ramifications of curcumin at the molecular level 

have also been observed in human trials on the targets described in this review, including NF-κB, 

STAT3, COX-2, phosphoryl kinase, prostaglandin E2, prostate-specific antigen, transforming growth 
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factor-β, adhesion molecules, pro-inflammatory cytokines, apoptotic proteins, ET-1, 5-LOX, HO-1,  

C-reactive protein, creatinine, AST, ALT, and triglycerides [193] Numerous pilot clinical studies as well 

as phase I and II clinical trials of curcumin have been conducted to investigate its anti-cancer potential. 

These have been summarized in Table 1 and discussed in brief below:  

(a) Cancer Lesions 

The first phase I clinical trial to test the toxicity, pharmacokinetics, and biological effective dose of 

curcumin was carried out by Cheng et al., in 2001 [292]. Twenty-five patients who had either one of the 

following pre-malignant high cancer risk conditions were included: urinary bladder cancer, arsenic 

Bowen’s disease of skin, uterine cervical intraepithelial neoplasm (CIN), oral leukoplakia, and intestinal 

metaplasia of the stomach. An escalating oral dose of 500, 1000, 2000, 4000, 8000, and 12,000 mg was 

tried and treatment-related toxicity was not observed up to 8000 mg/day. Higher doses were found to be 

unacceptable to the patients, primarily due to bulky volume of the drug. Peak serum curcumin 

concentration was reached 1–2 h after intake, while it was undetectable in urine. Histologic improvement 

of pre-cancerous lesions was observed in one of the two resected bladder cancer patients, two out of six 

Bowen’s disease patients, one out of four CIN patients, two out of seven oral leukoplakia patients, and 

one out of six patients with gastrointestinal metaplasia. Unfortunately, frank malignancies developed in 

one CIN patient and in one oral leukoplakia patient. Thus, in this study, apart from non-toxicity, the 

chemopreventive potential of curcumin against cancerous lesions was also demonstrated. In another 

randomized, double blind, placebo-controlled study, the efficacy of curcuminoids was evaluated in  

100 patients with oral lichen planus. 2000 mg of curcuminoids or placebo was given every day for  

7 weeks and 60 mg/day prednisone was given in the first week [293]. However, the trial was ended 

prematurely because the interim analysis predicted less than a 2% chance of better outcome in the 

curcuminoid group compared to placebo. The differences in the results of these two studies could be 

possibly attributed to the difference in the preparation of the curcumin dose. In a more recent study by 

Rai et al., 1000 mg curcumin tablet was given daily for 7 days to patients with oral leukoplakia, oral 

submucous fibrosis, or lichen planus, and also to healthy subjects (25 participants in each group) [294]. 

Serum and salivary vitamin C and E levels improved and MDA while 8-hydroxydeoxyguanosine (8-OHdG) 

levels decreased. In addition, these changes were associated with a reported decrease in pain. In a 

randomized, double blind, placebo controlled trial where 20 subjects were given 6000 mg/day of 

curcumin in three doses for 14 days, subjects showed improvement in clinical symptoms with a decrease 

in erythema, ulceration, and Modified Oral Mucositis Index (MOMI) [295]. 
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Table 1. Summary of clinical trials with curcumin in various cancers. 

Serial Study 
Number 

of Patients 
Health Condition Dose Outcome Reference 

1 Double blind crossover 62 Cancer lesions Topical ointment Symptomatic relief to patients [59] 

2 Pilot study 16 Lung cancer 
1500 mg/day;  

30 days (turmeric) 
Urinary excretion of mutagens was decreased in smokers [296] 

3 Pilot study 58 Cancer lesions 
3600 mg/day; 3 months 

(turmeric) 

Micronuclei number in mucosal cells and circulating 

lymphocytes decreased 
[297] 

4 Prospective Phase I trial 25 Cancer lesions 8000 mg/day; 3 months Histologic improvement of precancerous lesions [292] 

5 Prospective Phase I trial 15 Colorectal cancer 36–180 mg; 4 months Decrease in glutathione S-transferase activity [298] 

6 Phase I trial 12 
Hepatic metastases from 

colorectal cancer 
450–3600 mg/day; 1 week 

Low bioavailability of oral dose such that the dose of 

curcumin required to exert its pharmacological activity at 

hepatic level is not feasible in humans 

[299] 

7 Phase I trial 15 Colorectal cancer 
450–3600 mg/day;  

4 months oral dose 
PGE2 production reduced [300] 

8 Phase I trial 12 Colorectal cancer 450–3600 mg/day; 7 days M1G levels decreased [301] 

9 Pilot study 5 
Colorectal cancer (Familial 

adenomatous polyposis) 

1440 mg/day; 6 months, 

combined with quercetin 

The number and size of polyps reduced without any 

significant toxicity 
[302] 

10 Prospective Phase I trial 24 Healthy volunteers 
500–1200 mg; single oral 

dose 

Overall well tolerated but 30% subjects had minor adverse 

events 
[303] 

11 
Randomized, placebo 

controlled, double blind 
100 

Cancer lesions in oral 

lichen planus 

2000 mg/day; 7 weeks, 

combined with prednisone 
Not efficacious but well tolerated [293] 

12 Phase I/II trial 29 Multiple myeloma 

2000–12,000 mg/day; 12 

weeks combined with 

Bioperine 

Well tolerated, improved bioavailability and decrease in 

NF-κB, COX2 and STAT3 
[304] 

13 Phase II trial 25 
Advanced pancreatic 

cancer 
8000 mg/day; 2 months 

Well tolerated but absorption was limited and was effective 

only in some patients 
[305] 

14 Single blind, cross over 26 Multiple myeloma 4000 gm/day; 6 months 
Urinary N-telopeptide of type I collagen and paraprotein 

levels reduced 
[306] 
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Table 1. Cont. 

Serial Study 
Number 

of Patients 
Health Condition Dose Outcome Reference 

15 
Phase I, open-label, dose 

escalation trial 
14 

Advanced and 

metastatic breast cancer 

6000 mg/day; 7 days, 

every 3 weeks, combined 

with docetaxel 

Well tolerated and efficacious [307] 

16 Open-label, phase II trial 17 
Advanced pancreatic 

cancer 

8000 mg/day; 4 weeks; 

combined with 

gemcitabine 

Modest efficacy, therapy not a feasible [308] 

17 
Randomized, double blind, 

controlled 
85 Prostate cancer 

100 mg/day; 6 months, 

combined with soy 

isoflavones 

Serum PSA content decreased [309] 

18 Pilot study 75 Pre-cancerous lesions 1000 mg/day; 7 days 
MDA and 8-OHdG levels increased in saliva and serum 

while Vitamin C and E levels reduced 
[294] 

19 Phase IIa trial 44 Colorectal cancer 
2000–4000 mg/day;  

1 month 
Aberrant Crypt Foci formation reduced only in smokers [310] 

20 Pilot study 126 Colorectal cancer 1080 mg/day; 10–30 days 
Increased p53 expression, decrease in serum TNF-α and 

improved body weight 
[233] 

21 Phase I/II 21 
Gemcitabine-resistant 

pancreatic cancer 
8000 mg/day Well tolerated [311] 

22 Pilot study 39 Head and neck cancer 2 curcumin tablets 
IKKβ kinase activity decreased which correlated with 

IL-8 decrease in saliva 
[312] 

23 
Randomised, double blind, 

placebo controlled 
20 

Cancer lesions in oral 

lichen planus 
6000 mg/day; 14 days Clinical symptoms reduced with no adverse effects [295,313] 

24 

Randomised, double blind, 

placebo controlled, cross over 

followed by open label study 

36 Multiple myeloma 

4000 mg/ day; 3 months 

followed by 8000 mg/day; 

3 months 

Slowed down disease progression [314] 

25 Randomized, open label 50 
Chronic myeloid 

leukaemia 

15,000 mg/day; 6 weeks in 

combination with imatinib 
Enhanced decrease in nitric oxide levels [315] 
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(b) Colorectal Cancer 

Sharma et al., conducted two phase I trials in colorectal cancer patients who were refractory to 

conventional chemotherapeutics [298,300]. In the first study in 2001, curcuma extract, equivalent to  

36–180 mg of curcumin, was given orally to 15 patients, daily for 4 months [298]. Dose-limiting toxicity 

was not observed and neither curcumin nor its metabolites were detected in blood or urine but were 

found in feces. The treatment maintained radiologically stable disease for 2–4 months in five patients. 

The study indicated safety but low oral bioavailability of curcumin. In a subsequent study in 2004, an 

escalating dose of curcuminoids comprising 450, 900, 1800, or 3600 mg per day for 4 months was tested 

in 15 patients [300]. Curcumin and its metabolites were detected in plasma and urine. Overall, the drug 

was well-tolerated but three patients suffered from minor gastrointestinal adverse events. A minor 

increase of alkaline phosphate and lactate dehydrogenase was observed in the serum of four and three 

patients, respectively. Similar minor adverse effects in a few subjects were observed by Lao et al., in a 

prospective phase I trial conducted in 2006 [303]. In this study, 24 healthy volunteers were given 

escalating doses of 500, 1000, 2000, 4000, 8000, 10,000 and 12,000 mg in a single dose and safety was 

assessed 72 h later. 30% of the subjects experienced diarrhea, headache, rash, and yellowish stools 

irrespective of the dose. 

Garcea et al., investigated whether pharmacologically active levels of curcumin could be achieved in 

the colon and rectum of colorectal cancer patients [299]. After oral administration of 450, 1800, or  

3600 mg of curcumin every day for 7 days, traces of curcumin and its metabolites were found in  

normal mucosa, malignant colorectal tissues, and intestinal tissues. The observed decrease in 

malondialdehyde-DNA M1G-adduct and COX-2 in colorectal tissues suggested efficacy of the dosage. 

Even in combination therapy, wherein 480 mg of curcumin was given with 20 mg of quercetin thrice a 

day, the number and size of polyps in patients suffering from familial adenomatous polyposis was found 

to be reduced after 6 months of treatment [302]. In a non-randomized, open-label, phase IIa trial,  

44 smokers with eight or more aberrant crypt foci (ACF), which are a precursor of colorectal polyps, 

were treated with 2000 or 4000 mg of curcumin daily for 30 days [310]. Only the higher dose 

significantly reduced ACF formation, which was associated with a five-fold increase in post-treatment 

plasma curcumin/conjugate levels. However, the underlying mechanism is yet unclear. In another study, 

360 mg of curcumin was administered thrice a day for 10–30 days in colorectal cancer patients after 

diagnosis and before surgery [233]. Curcumin administration resulted in an increase in body weight, 

number of apoptotic cells, and p53 expression, while it decreased TNF-α level in serum. The study 

concluded that curcumin treatment can improve the general health of colorectal cancer patients, 

probably, but not necessarily, due to the increase in p53 expression. 

(c) Multiple Myeloma 

The chemopreventive potential of curcumin in monoclonal gammopathy of undetermined 

significance (MGUS), a high-risk condition for progression to multiple myeloma, was tested by 

Golombick et al., in a cross-over study design [306]. Out of 27 patients, 17 received 4000 mg of 

curcumin for 3 months before cross-over to placebo. The rest received placebo first, followed by 

curcumin. The levels of paraprotein and urinary N-telopeptide from type I collagen decreased in some 
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patients. The same group reported beneficial effects of curcumin in MGUS in another randomized, 

double blind, placebo-controlled cross-over study [314]. A phase I/II trial by Vadhan-Raj et al., in  

29 patients with asymptomatic, relapsed, or plateau phase multiple myeloma showed a decrease in 

expression of NF-κB, COX-2, and STAT3 in peripheral blood mononuclear cells and stable maintenance 

of disease [304]. The patients were given either oral dose of curcumin alone (2000, 4000, 6000, 8000, 

or 12,000 mg/day) or in combination with 10 mg of bioperine. 12 patients continued the treatment for 

12 weeks, followed by combination treatment for five patients (one at a dose of 4000, two at 6000 mg, 

and two at 8000 mg) for 1 year. Further, well-controlled clinical trials with larger sample sizes are 

required to substantiate the efficacy of curcumin against multiple myeloma. 

(d) Pancreatic Cancer 

Dhillon et al., conducted a phase II clinical trial in 25 advanced pancreatic cancer patients [305]. An 

oral dose of 8000 mg of curcumin was given every day until disease progression, with restaging 

performed every 2 months. Low, steady-state levels of curcumin and its conjugates were detected in the 

peripheral circulation for the first 4 weeks with a peak at 22–42 ng/mL. In two patients, a biological 

effect was seen and in one the disease was maintained stably for 18 months. Remarkably, a significant 

but brief tumor regression was seen in one patient with a concomitant increase in serum cytokine levels. 

NF-κB, COX-2, and STAT3 suppression in peripheral mononuclear cells was also observed in the 

patients. Although oral curcumin was found to be safe and well-tolerated, poor bioavailability still 

remains an issue, which partly explains the biologic activity observed only in some patients. In another 

open-label, phase II trial, a combination of curcumin and gemcitabine was tested in advanced pancreatic 

cancer patients [308]. Seventeen patients were administered 8000 mg of curcumin orally every day for 

4 weeks while 1000 mg/m3 of gemcitabine were given intravenously three times a week. In five patients, 

curcumin or the whole treatment was discontinued due to toxicity and one patient died suddenly. In the 

remaining 11 patients, a partial response was seen; four had stable disease while in six the tumor 

progressed. Tumor progression time was 1–12 months, with overall survival time of 1–24 months, 

indicating a modest efficacy of the combination therapy. Also, the authors concluded that 8000 mg/day 

of curcumin with gemcitabine was above the maximum tolerated dose. In a recent phase I/II trial by 

Kanai et al., a similar combination of gemcitabine and curcumin was used to treat gemcitabine-resistant 

pancreatic cancer in 21 patients [311]. In contrast, the combination of gemcitabine and curcumin  

8000 mg/day was found to be safe and well tolerated in this study. Studies in a larger cohort are required 

to validate the results. 

(e) Breast Cancer 

An open-label, phase I clinical trial was conducted by Bayet-Robert et al., to evaluate the feasibility 

and tolerability of curcumin in combination with docetaxel [307]. Fourteen patients with advanced or 

metastatic breast cancer were given 100 mg/m3 of docetaxel every 3 weeks on day 1 for six cycles, while 

an oral escalating dose of curcumin was given for seven consecutive days, starting from 500 mg/day until a 

dose-limiting toxicity was observed. The authors reported that the maximum tolerable dose was  

8000 mg/day but they advocated 6000 mg/day for 7 consecutive days every 3 weeks in combination with 

the standard docetaxel dose for treatment of breast cancer. 
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(f) Prostate Cancer 

Ide et al., conducted a randomized, double blind study, wherein the efficacy of a combination therapy 

of soy isoflavones and curcumin was evaluated [309]. Eighty five participants who underwent prostate 

biopsies because of increased PSA (prostate-specific antigen) levels but had negative prostate cancer 

findings were enrolled. Either a supplement containing 40 mg of isoflavones and 100 mg of curcumin 

or placebo was administered daily for six months. Serum PSA levels decreased in the combination 

therapy group. The authors suggested a possible synergistic role of curcumin with soy isoflavones in the 

suppression of PSA production. The anti-cancer activity of curcumin via inhibition of IKKβ kinase 

activity was examined in patients with head and neck squamous cell carcinoma (HNSCC) [312]. 13 patients 

with dental carries, 21 with HNSCC, and five healthy volunteers (total 39) were given two tablets, which 

they chewed for 5 min. IKKβ kinase activity was suppressed in salivary cells while IL-8 levels decreased 

in patients with dental carries, but the decrease in IL-8 levels was not significant in HNSCC patients. 

The authors suggested the use of IKKβ kinase as a biomarker for assessing the effect of curcumin  

in HNSCC. 

(g) Chronic Myeloid Leukemia 

Recently, in a randomized open label study, the efficacy and safety of curcumin was evaluated against 

chronic myeloid leukemia [315]. 25 participants were given 800 mg of imatinib daily for 6 weeks while 

the rest were given a combination of 800 mg of imatinib with 5000 mg of curcumin thrice a day. Nitric 

oxide levels were found to decrease significantly in the combination therapy group, as compared to 

placebo and imatinib only group. The authors advocated the use of curcumin as an adjuvant to imatinib 

for the treatment of chronic myeloid leukemia. 

4. Conclusions 

A plethora of in vitro and in vivo research together with clinical trials conducted over the past few 

decades substantiate the potential of curcumin as an anti-cancer agent. At the molecular level, curcumin 

targets numerous pathways, highlighting its ability to inhibit carcinogenesis at multiple levels and thus, 

potentially circumventing the development of resistance. However, there is a paucity of data to explain 

the underlying mechanism of its activity. Clinical trials with curcumin indicate safety, tolerability,  

non-toxicity (even up to doses of 8000 mg/day), and efficacy. These studies provide a solid foundation 

for more well-controlled studies in larger cohorts as well as open avenues for future drug development. 

However, curcumin activity is limited by its poor bioavailability and some possible adverse effects. The 

development of formulations of curcumin in the form of nanoparticles, liposomes, micelles or 

phospholipid complexes to enhance its bioavailability and efficacy are still in its early stages. 

Nonetheless, curcumin has established itself as a safe and promising molecule for the prevention and 

therapy of not only cancer but also other inflammation-driven diseases. 
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Abbreviation 

AP-1, activator protein 1; AAPK, Abscisic-acid-activated protein kinase; AHR, aryl hydrocarbon 

receptor; AR, androgen receptor; AK, adenylate kinase; ATPase, adenosine triphosphatases; Bad, Bcl2 

associated death promoter protein; Bid, BH3 interacting-domain death agonist; Bcl2, B-cell lymphoma 

2; Bcl-xL, B-cell lymphoma extra-large; Bax, Bcl-2-associated X protein; CTGF, connective tissue 

growth factor; CXCR, chemokine receptor; CXCL, chemokine ligand; Ca2+PK, calcium/calmodulin 

dependent protein kinase; CREB-BP, CREB-binding protein; CCND1, Cyclin D1; COX-2, 

cyclooxygenase-2; c-myc, Myelocytomatosis cellular oncogene; DR, death receptor; DEF-40, 

Differentially Expressed In FDCP; EGFR, epidermal growth factor receptor; EGFR-K, Epidermal 

growth factor receptor-kinase; ERK, extracellular-signal-regulated kinases; ECM, extracellular matrix; 

ER-α, estrogen receptor-alpha; EPCR, Endothelial protein C receptor; ELAM-1, endothelial-leukocyte 

adhesion molecule-1; EGF, epidermal growth factor; ERE, estrogen response element; EGR-1, early 

growth response; FAK, Focal Adhesion Kinase; vFLIP, viral FADD-like interleukin-1β-converting 

enzyme (FLICE)/caspase-8-inhibitory protein; FGF, fibroblast growth factor; Fas R, Fas receptor/CD95; 

FPT, Farnesyl protein transferase; GST, glutathione-S-transferase Telomerase; GCL, Glutamate 

Cysteine Ligase; HGF, hepatocyte growth factor; HIF-1α, hypoxia-inducible factor 1α; H2R, histamine 

H2 receptor; HER-2, human epidermal growth factor receptor 2; Hsp-70, Heat shock protein-70; ICAM-1, 

intracellular adhesion molecule 1; IL, interleukin; IGF-1, insulin-like growth factor; IκB, inhibitory κB; 

IKK, IκB kinase; IAP-1, inhibitor of apoptosis; IR, insulin receptor; ITR, Inositol triphosphate receptor; 

iNOS, inducible nitric oxide synthase; JAK, Janus kinase; LDLR, Low-Density Lipoprotein receptor;  

5-LOX, 5-lipoxygenase; MMP, matrix metalloproteinase; MCP, monocyte chemoattractant protein; 

MIP, macrophage inflammatory protein; MDRP, multidrug resistant protein; MAPK, mitogen-activated 

protein kinase; NF-κB, nuclear factor κB; Nrf-2, Nuclear factor (erythroid-derived 2)-like 2; NGF, nerve 

growth factor; NSCLC, non-small cell lung cancer; NQO-1, NAD(P)H:quinone acceptor oxidoreductase 

1; ODC, ornithine decarboxylase; PTK, protein tyrosine kinase; PKA, protein kinase A; PKB, protein 

kinase B/AKT; PhK, Phosphorylase kinase; PAK, p21 activated kinases; Pp60C-TK, pp60c-src tyrosine 

kinase; PDGF, platelet derived growth factor; p53, tumor suppressor gene; PPAR-γ, peroxisome proliferator 

associated receptor gamma; cPLA2, Secreted phospholipases A2; PI3K, Phosphoinositide-3-kinase; 

RCC, renal cell carcinoma; ROS, reactive oxygen species; Src-2, src-non receptor tyrosine kinase; 



Molecules 2015, 20 2748 

 

 

STAT3, signal transducer and activator of transcription 3; SCC, squamous cell carcinoma; TNF, tumor 

necrosis factor; TF, tissue factor; TGF-β1, transforming growth factor-beta; TMMP-3, truncated matrix 

metalloprotease-3; TAM, tumor-associated macrophage; uPA, urokinase plasminogen activator; VEGF, 

vascular endothelial growth factor; VCAM-1, vascular cell adhesion molecule 1; WT-1,Wilms tumor-1; 

XIAP, X-linked inhibitor of apoptosis. 
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