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Background
The targeted inhibition of specific molecules in signaling 
networks has emerged as a leading anti-cancer strategy. The 
large number of off-target effects associated with targeted 
therapies in cancer has been termed as the “whack a mole 
problem”1 because modulation of one molecular target often 
results in the activation of another non-targeted molecule. 
In the cancer research community, off-target effects are gen-
erally attributed to non-specific drug interactions or non-
linear feedback connections within an intracellular network, 
but may also be due to retroactive signaling.2 Moreover, as a 
consequence of the varied ways an individual cell may adapt 

to changes in its local environment, the connectivity and 
inter-functional dependence of molecular networks is poten-
tially unique to each sub-clonal population within a tumor. 
Determination of precisely how key dysregulated networks 
are wired as an integrated network circuit in tumor cells as 
well as in surrounding normal tissue will greatly enhance 
the search for more rational and patient-specific therapeutic 
interventions.

The Notch pathway plays a complex role in the 
tumorigenesis of both hematologic and solid tissues.3 Notch 
signaling is an evolutionarily conserved pathway that plays a 
critical role in embryonic development by tightly regulating 
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cellular differentiation, angiogenesis, proliferation, and apop
tosis.3–6 There is increasing evidence that tumor-initiating cells  
(also known as cancer stem cells) are dependent on Notch 
signaling.4,5 Notch pathway crosstalk is not well understood, 
and a paradoxical relationship between RAS and Notch sig-
naling has been reported in the literature.7 Unraveling the 
complex circuitry of Notch signaling in both normal and 
malignant tissue is of critical importance in cancer.

The accurate prediction of intracellular networks from 
data remains a difficult problem in molecular systems biology 
and bioinformatics. A number of reverse engineering methods 
have been developed8–11 to attempt to infer intracellular net-
works from experimental steady state or time course protein 
concentration data, which are often collected from a series 
of perturbation experiments. While some of these methods 
have proven highly predictive, one limitation is that they often 
require prohibitive amounts of experimental data to be pre-
dictive. The dialogue on reverse-engineering assessment and 
methods (DREAM)12 was developed to encourage the inno-
vation of reverse engineering approaches for the prediction 
of gene regulatory networks from high throughput datasets, 
and a number of networks generated by teams participating 
in DREAM challenges have proven highly predictive. While 
the networks predicted as part of these challenges are direc-
tional (indicating causal relationships), they are unsigned 
(which means they do not provide a prediction of whether an 
interaction is activating or inhibiting). The methodology we 
rely on in this work attempts to reverse engineer not only the 
sign of the interactions but also the logical hierarchy when 
multiple nodes regulate the same target.

Are cellular networks digital circuits? Individual cells 
exist in diverse states depending on environmental cues; 
and, in spite of their heterogeneity, they often exhibit deter-
ministic responses to stimuli. Is it, therefore, reasonable to 
model intracellular molecular networks as digital circuits?  
A number of switch-like all-or-nothing type cellular responses 
have been observed experimentally. For example, signaling 
cascades often exhibit an ultrasensitive and highly switch-
like response.13,14 Ferrell et al.15 showed the all-or-nothing  
switch-like character of the MAPK cascade in Xenopus 
oocyte maturation in response to a continuously variable 
stimulus. Cytokine secretion in T-cells has also been char-
acterized as digital.16,17 Notch ligand regulation can generate 
all-or-nothing responses that induce cellular phenotypes in 
a variety of animal models.18,19 The endoplasmic reticulum 
has sophisticated stress signaling pathways, which switches 
off protein synthesis and activates key chaperones to improve 
effective protein processing.20,21 Stem cells convert graded sig-
naling to digital outputs that promote or repress proliferation 
in an all-or-nothing manner.22

Lahav et al.23 showed the digital-like response of p53 
oscillations in response to ionizing radiation (IR). In their 
experiments, damped p53 oscillations were measured in cells 
after exposure to radiation. They observed p53 and MDM2 

oscillations that strongly resembled digital behavior. DNA 
damage from the IR lead to lower MDM2 levels that stabi-
lized p53 levels, which, in turn, allowed p53 activity to increase 
and, consequently, MDM2 expression to also increase. The 
mean height and width of the pulses observed corresponded 
to the oscillatory p53 activity peaks but did not vary with the 
irradiation dose, indicating that the strength of output did not 
correlate with the strength of the input.23

Recently, Tamsir etal.24 molecularly engineered simple 
logic gates linked by diffusible chemical signals in bacteria. 
This was accomplished by compartmentalizing logic gates 
between strains of bacteria and using quorum sensing to allow 
for communication between strains, combining two methods 
of digital computation. In this work, promoters served as the 
inputs for logic gates, offering modularity through the ability 
to switch inputs and induce the corresponding responses by 
arranging genetic promoters and repressors of specific genetic 
targets according to a desired Boolean logic rules.

Building logic-based network models of cancer. All 
these examples support the notion that cellular molecular 
networks behave similar to digital electronic circuits. In an 
analog circuit, an increase in signal strength monotonically 
corresponds to the strength of the output, while in a binary 
digital system the same output, regardless of the strength of 
input, is observed.

We view logic networks as models of the signal transfer 
in a digital circuit that hold great promise for inferring bio-
logical networks in cancer cells. A number of predictive logic-
based network models of cancer exist in the literature.25–27 
Two-state logic-based models (which simulate the functional 
activation and deactivation of each molecule represented as a 
node in the network) can be powerful tools for investigating 
complex intracellular molecular networks because they are 
qualitatively predictive and require little to no prior knowl-
edge of the parameter values and mechanistic details that are 
essential for deterministic and quantitatively precise kinetic 
methods.28–31 Fuzzy logic and multistate logic-based mod-
els (which permit nodes in the network to be in more than 
two states) are also powerful but require parameter estimates 
that are not always easy to correlate with biophysical chemi-
cal theory.31

Molecular perturbation experiments that provide read-
outs of key nodes in a network reveal important clues about 
the structure of a network. Logic methods and perturba-
tion experiments can be leveraged to infer the underlying 
structure of a molecular network. In this work, we use a 
logic-based network modeling framework to simulate Notch 
signaling in the SW480 colon cancer cell line. We relied on 
data from perturbation experiments recently published by 
Ponnurangam etal.5 and develop and employ a novel reverse 
engineering approach to predict the interactions most likely 
at work in these cells. We also make predictions of direct and 
indirect interactions of honokiol and ionizing radiation in 
SW480cells.
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esults
Notch is a transmembrane receptor protein consisting of two 
primary subunits. Upon ligand binding, Notch is cleaved by 
the γ-secretase complex, and the Notch intracellular domain 
(NICD) is released in the cytoplasm where it translocates to the 
nucleus and promotes the transcription of a number of target 
genes. In mammalian cells there are five primary ligands for 
Notch: DLL1, DLL3, DLL4, Jagged 1, and Jagged 2.3–6,18,19 
Through transmembrane receptor ligand binging, Notch 
can also play a role in synchronizing signaling between cells 
(Fig.1A).

Model development and data discretization. In a 
recent study, Ponnurangam et al.5 investigated the effects of 
combined therapy of honokiol and IR in colon cancer. Part 
of their study involved perturbations of the SW480 cell line 
treated with or without honokiol and/or IR. Honokiol, which 
is isolated from Magnolia officinalis, has anti-inflammatory 
and antioxidant activity, and can induce apoptosis or inhibit 
proliferation in several cancer cell lines.5,32 The four primary 
perturbation conditions used in their study were (1) control 
(no honokiol and no IR), (2) honokiol only, (3) IR only, and 
(4) both honokiol and IR. The authors reported readouts 
of proliferation and apoptosis under the four perturbation 

conditions as well as western blot (WB) data for a number of 
key proteins involved in Notch signaling. We converted the 
data for CDK1, MYC, BAX, Jagged, NICD, and HES (along 
with the reported readouts of proliferation and apoptosis) to 
discrete digital readouts (Fig. 1B, Supplementary Table S1) 
of either ON or OFF. It is important to note what ON and 
OFF values represent in a logic network. A node state of ON 
implicitly assumes that the molecule represented by the node 
is at an expression or activity level that is above the thresh-
old needed to induce a regulatory change in the molecules it 
regulates. Similarly, a node state of OFF implicitly assumes 
the node is at an expression or activity level that is below the 
threshold.31 Because the data reported5 provide qualitative  
readouts of protein levels but do not include activation read-
outs (eg, from phospho- WB data), the model we constructed 
implicitly assumes that the presence of the protein corresponds 
to the active state of the protein.

onstruction of an initial hypothesized interacting 
network. We first constructed a hypothesized interaction net-
work using knowledge from the literature (Fig.1C). Cyclin D1, 
c-MYC, and P27 are involved in the regulation of cell cycle 
progression and proliferation,33–35 while Bax plays a key regu-
latory role in controlling apoptosis.36 In our model, Jagged 
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igure1. Honokiol and ionizing radiation (IR) affect Notch signaling. (A) Upon binding to a ligand, the transmembrane Notch receptor is cleaved by 
γ-secretase, allowing the intracellular domain to translocate to the nucleus, where it can activate a variety of transcription programs, including that of 
its own ligand. Notch signaling can, therefore, play a role in synchronizing signaling across cells in a population. () Western blot readouts of proteins 
affected by honokiol and/or IR from Ponnurangam etal.5 are represented as discrete digital values of activate and inactive states. (C) The initial proposed 
interaction network describing the effect honokiol and IR on cellular signaling with cross talk to the Notch pathway. Black edges with arrows indicate 
activating regulations and red edges with blunt ends indicate inhibiting regulations.
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represents the ligand for Notch because it was the only ligand 
measured in the experiment and, along with HES, is one of 
several transcription targets downstream of NICD signaling. 
For simplicity we did not include a separate node for Notch 
in the model and instead allowed the NICD node to repre-
sent both the expressed receptor as well as the cleaved protein 
domain. We also included activation of AKT and RAS by 
serum in our model. The data were collected from experiments 
performed in rich media containing serum, which is known to 
activate AKT and ERK (a kinase downstream of RAS).37,38 
RAS is mutated in SW480cells, which is positive for H-RAS, 
K-RAS, and N-RAS expression. In a separate study, a WB 
performed in SW480in rich media showed RAS to be in the 
active GTP bound state under control conditions.39 We there-
fore assumed the presence of serum is sufficient to activate 
both AKT and RAS.

A significant amount of data indicates that honok-
iol has a variety of functions in the cell (including 
anti-inf lammatory, anti-angiogenic, anti-viral, and anti-
tumor functions).40,41 While the exact pharmacological 
mechanisms of honokiol are still being elucidated, they 
are thought to include interactions with several targets 
including the inhibition of AKT.41 Given its reported role 
in modulating proliferation, we initially hypothesized that 
honokiol may also directly or indirectly alter the RAS 
pathway (a hypothesis that is supported by data).42 More-
over, in developmental systems, Notch signaling involves  
the negative repression of a downstream gene target by its 
protein product, such as the her1/7genes in zebrafish.43,44 
We, therefore, hypothesized that it is possible for the  HES 
protein (a mammalian ortholog represented as HES-P in 
our model) to exert regulatory control on the transcription 
of the hes gene (represented as hes-g in our model). We 
also included possible cross talk between RAS and Notch 
signaling.3,6

An interaction network diagram provides information 
about the directionality of an interaction (eg, which nodes 
regulate other nodes) and ideally, as in our case, it also includes 
signed interactions defining whether a regulation is activat-
ing or inhibiting. An interaction network, however, is not 
designed to provide information about the expected response 
when multiple molecules acting on the same node are pres-
ent. In contrast, a logic network, which is similar to a circuit 
diagram, explicitly shows directionality as well as how mul-
tiple signals acting on a single target should be integrated31 by 
incorporating logic gates made of logic operators describing 
the interaction in a rule-based manner.

onstruction of initial hypothesized logic network. 
Using the interaction network as a guide as well as literature 
knowledge, we constructed an initial hypothesized logic net-
work of Notch signaling in SW480cells (Fig. 2A) and com-
pared the steady state output (Fig.2B and C) of this model to 
the observed output (Fig.1B). A penalty was assessed for any 
differences between simulation and experiment. A penalty 

of 0.0indicates an exact qualitative match with the observed 
data. A penalty of 1.0 indicates the simulated values were 
wrong for all nodes in all test conditions. The initial hypoth-
esized network was assessed a penalty of 0.44, indicating that 
this network does not fit the data well (Fig. 2C). Much of 
the difference between the simulated and experimental values 
can be attributed to predicted oscillations in the hypothesized 
network (Fig.2B and C). An important limitation of the cur-
rent approach is that we are relying on WB data collected at 
a single time point that does not reveal whether a molecule is 
oscillating. Additional time course data would be required to 
elucidate any oscillations.

We next ran a series of simulations where we perturbed 
the network by sequentially dropping each edge in the logic 
network and then swapping each logic operator for its opposite 
operator. The smallest penalty observed after a single network 
perturbation was 0.34, which suggests that the network as 
constructed remains incomplete.

Logic network search space generation. We next enu-
merated all possible ways each of the nodes in the interac-
tion network could be logically controlled by their regulatory 
nodes. A list of each node and its potential regulators is 
summarized in Supplementary Figure S1A. As an example, 
CDK1 is inhibited by P53 and P27in the interaction network 
(Fig.1C). When we generated all possible ways P53 and P27 
could potentially combine to regulate CDK1, however, we did 
not restrict the logical control to inhibition only, which allows 
for the possibility of non-canonical adaptations in these cells 
(Supplementary Fig. S1A). This led to a total of 135 potential 
logic rules that could describe the regulation of all nodes in 
the network. Together these rules combined to produce a total 
of 2.6×1012 possible unique logic networks.

onstraint-based network inference search. As a con-
sequence, it was not possible to exhaustively test each of these 
networks via direct simulation. Therefore, we used a genetic 
algorithm (GA)45 as a constraint-based search to look for 
networks that best fit the data by minimizing the difference 
between the simulated and observed data using a fitness func-
tion to assign a penalty score for incorrect predictions (see 
Methods section). After several repeated runs, we did not find 
any network that produced penalty values less than 0.0625 
(there were, however, tens of thousands of networks that 
produced this penalty value). Therefore, we concluded that 
critical regulations were missing from the hypothesized net-
work model. Given the marked reduction in proliferation and 
increase in caspase 3 cleavage reported by Ponnurangam etal.5 
when IR and honokiol are used in combination, we reasoned 
that honokiol may interact directly with MYC and/or BAX 
via interactions not previously included in our model. Adding 
honokiol as a potential regulator of MYC and BAX added an 
additional 164 possible logic regulations to the existing set of 
135 logic regulations and further increased the set of possible 
logic networks in the search space to 1.4×1014. We repeated 
the constraint-based network search as before and this time 
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igure2. Initial proposed logic circuitry controlling honokiol and IR effects on Notch signaling in SW480cells. (A) Logic regulations were carefully 
considered for each interaction in the network. The graphical representation of the logical circuit is equivalent to the logic rules listed to right. Black 
edges with arrows indicate activating regulations and red edges with blunt ends indicate inhibiting regulations. The * after a node on the left-hand side 
of an expression indicates the value the node will assume at the next time step. () Asynchronous simulation of the logic network in (A) was performed 
under the four experimental conditions. The y-axis represents the probability a node is ON. Probabilities between 0.0 and 1.0 after the first 5–10 time 
steps indicate a node is oscillating in the steady state. (C) The predicted steady state values for the network are represented in discrete from. The red 
Xs indicate differences between predicted values and the experimental values in Figure1B. The raw penalty of this network is 14. After scaling by the 
maximum raw penalty of 32, a scaled penalty of 0.44 was generated. Much of the difference between the simulated and experimental values can be 
attributed to predicted oscillations.

found far fewer networks (1,850) with a penalty of 0.0625, 
again the smallest penalty found. We observed that each of 
these networks were wrong in the same two conditions: (1) the 
Jagged value in the presence of both IR and honokiol and (2) 

the MYC value when only honokiol is present. In the former 
case, all tested networks predicted that Jagged was ON (when 
it was expected OFF), and in the latter case, all tested net-
works predicted MYC OFF (when it was expected ON).

CanCer InformatICs 2014:13(s5) 5

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Wynn etal

evelopment of truth tables to predict the likely 
regulation of Jagged and M. If we consider the digi-
tal representation of both Jagged and MYC in Figure1B, 
we can construct a set of truth tables to test the possible 
ways that IR and honokiol can be combined to produce the 
expected readouts (Fig. 3). We found that the only logi-
cal combination of honokiol and IR that will produce the 
readout expected for Jagged or MYC is a rule that contains 
“NOT Honokiol or NOT IR”. Because our hypothesized 
network does not allow for any effects from IR stimula-
tion to modulate proteins involved the Notch pathway, we 
next allowed the network search to proceed by permitting 
IR and honokiol to be more promiscuous in their potential 
interactions in the network. Specifically, all but the follow-
ing three nodes were allowed to potentially be regulated by 
honokiol: proliferation, apoptosis, and hes-g. In addition, 
four Notch pathway nodes were permitted to be potentially 
regulated by IR: Jagged, NICD, hes-g, and the HES-P 
(Supplemental Fig.S1B). These additional potential regula-
tions increased the number of logic networks that can be 
formed to 1.8×1024.

When we ran the constraint-based network search, 
hundreds of thousands of networks were found with a pen-
alty of 0.0, indicating that a very large number of networks 
can generate output that matches SW480 expected values. 
To attempt to pare this list to a more reasonable number, 
f ilters were added to further constrain the network search 
so that unlikely interactions were not permitted. The fil-
ters selected removed interactions we assumed would be 
detrimental to the tumor cells’ survival and, therefore, 
represent unlikely adaptations. The regulations not per-
mitted were

1. honokiol activates AKT
2. honokiol activates RAS
3. honokiol activates MYC
4. honokiol inhibits p27
5. serum inhibits AKT
6. serum inhibits RAS
7. AKT inhibits MYC

8. RAS inhibits MYC
9. IR activates MYC
10. AKT activates BAX
11. P27 activates CDK1
12. MYC activates P27

We again ran the constraint-based network search with 
these filters and found 30,347 unique network configurations 
with a penalty score of 0.0.

egulatory frequencies in the candidate networks. 
Without performing additional experiments (which ideally 
would include readouts for several more proteins as well as 
activation data in the form of phospho-WB readouts), it is not 
easy to rationally cull the list further. Therefore, we next cal-
culated the frequency of distinct regulations present for each 
node in the set of 30,347 candidate networks (Table1).

M regulations. There were four distinct types of 
regulations of MYC found in the 30,347 candidate networks: 
“AKT,” “not honokiol,” “not IR,” and “RAS”, each of which 
occurred in more than 76% of the networks, while “not IR” 
occurred in 100% of networks. It is worth noting that this 
analysis only tells us the sign (activating or inhibiting) of an 
interaction and does not tell us how, for example, “AKT” and 
“not IR” (which must occur together in 84% of the networks; 
Table 1) are logically integrated to regulate MYC. More 
experimental data will be required to unravel the nuanced 
details of the logic circuitry in the cells.

NI regulations. The regulation of NICD by “IR” or 
“not IR” occurs in 77% and 5%, respectively, of the candi-
date networks. If there was strong reason to believe that IR 
induced signaling plays no role in Notch expression and/or 
NICD cleavage, the removal of both activating and inhibit-
ing IR regulations of the NCID node would eliminate the 
majority of the candidate networks (leaving a much smaller 
list of candidate networks to evaluate). Doing so, in this case, 
however, is not recommended without performing additional 
validation experiments given published data on the potential 
cross talk between P53 and Notch signaling.46

In the case of NICD regulation by honokiol, activation 
by honokiol occurs in 96% and repression occurs in just over 
1% of networks. This result strongly suggests that honokiol 
is likely to play some role regulating either the expression of 
Notch or cleavage of the intracellular domain. The role of 
honokiol and IR in these regulations may represent an effect 
on the γ-secretase complex, which is involved in NICD cleav-
age. Alternatively, it could represent a direct effect on Notch 
transcription. In any case, these results provide a specific and 
tangible set of tests to consider in the laboratory. Honokiol is 
generally associated with disruption of cancer causing events.5 
One reasonable next set of experiments to perform in the labo-
ratory would be to directly test the role of honokiol and IR on 
Notch and NICD cleavage. If either IR or honokiol are discov-
ered to destabilize NICD in some way, this will allow paring 
the candidate network down to ∼5% of the total networks.

Truth table output for each ruleInputs

IR Hono
Not Hono
and not IR

Not Hono
or not IR

Not Hono
and IR

Not Hono
or IR

Hono and
not IR

Hono or
not IR

Hono and
IR

Hono or
IR

igure3. Truth tables for honokiol and IR regulation. If honokiol and IR 
are the only inputs to a regulation, eight unique logical expression can be 
generated using the AND, OR, and NOT operators. The logical output of 
each rule is presented in truth table form. Black indicates a target node 
(eg, Jagged) is ON and white indicates a target node is OFF for the given 
inputs. The only logical regulation of honokiol and IR that produces the 
readout expected for Jagged or MYC in Figure2B is indicated in red in 
the truth table.
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Table1. Frequency of each regulation type in 30,347 candidate 
networks that fit the SW480 data.

Tg Nod % of dd ok   
go

C1 honokiol
NT honokiol
NT P27
NT P53
P53

10.64%
74.65%
94.24%
81.33%
16.99%

MYC AT
NT honokiol
NT IR
RAS

84.42%
93.45%
100.00%
76.35%

AX honokiol
NT AT
 honokiol
NOT P53
P53

73.32%
86.25%
1.11%
21.95%
78.05%

JAE HES-P
honokiol
NOT HES-P
NT honokiol
NT IR
 


29.57%
0.08%
28.41%
99.00%
100.00%
10.88%
42.27%

NIC honokiol
IR
JAE
 honokiol
 I\
NOT JAGGED

96.98%
77.36%
99.36%
1.33%
5.03%
0.64%

HES-P hes1-g 100.00%

hes1g HES-P
I
NIC
NOT HES-P
 I

48.77%
59.43%
100.00%
27.82%
16.92%

RAS NT honokiol

serum

87.24%
4.34%
50.27%

AT AKT
NT honokiol
serum

0.77%
92.80%
63.07%

P27 HES-P
honokiol
NOT HES-P
NT MYC
P27

41.69%
73.84%
33.09%
92.58%
0.05%

P53 honokiol
IR
MDM2
 honokiol
 I
NOT MDM2

21.52%
78.05%
1.39%
0.13%
21.95%
16.54%

MM2 honokiol
MDM2
NOT H
NOT P53
P53

47.70%
5.96%
30.16%
39.52%
28.63%

PRLI C1 100.00%

APP AX 100.00%

Note: Regulations in bold were included in at least 70% of the networks. The 
presence of the auto-regulation of a node (eg, AKT by AKT) represents the 
logic rule that allows for constitutive activation of the node. Regulatory nodes 
preceded by “NOT” indicate inhibitory regulations of the target node, and all 
others indicate activating regulations of the target node.

Possible antagonistic regulation of Notch signaling 
by ionizing radiation. The IR-based regulation of Jagged 
and NICD (both key components of Notch signaling in our 
model) appears to be very different in the candidate networks. 
For example, negative IR regulation of Jagged occurs in 100% 
of the networks. In contrast, negative IR regulation of NICD 
occurs in only 5% of the networks, while positive IR regulation 
of NICD occurs in more than 77% of the networks (Table1). 
This strongly suggests that signaling downstream of IR stim-
ulation has antagonistic effects on different elements of the 
Notch pathway. Finally, honokiol activated Jagged, the Notch 
ligand, in 25 (0.08%) of the networks but inhibited Jagged 
in almost all the remaining networks (99.00%). Two possible 
mechanisms of honokiol regulation of Jagged are presented 
in Figure4. It is noteworthy that in many of the candidate 
networks we interrogated, IR inhibition was usually part of a 
AND gate when honokiol had an activating effect on Jagged 
(Fig.4B) but was sometimes part of an OR gate when honok-
iol had an inhibitory effect on Jagged. When an inhibitor is 
part of an OR gate, the regulation is much weaker then when 
it is part of AND gate because, when an activator and inhibi-
tor are joined by the AND operator, the inhibitor will always 
dominate when both are present. In contrast, when they are 
joined by an OR operator, the activator will dominate.

iscussion
It is increasingly accepted that the inability of many targeted 
cancer therapies to keep the disease in check or eliminate all 
cancer cells, despite promising pre-clinical investigations, is 
due in large part to the complexity of the non-linear intracel-
lular molecular circuitry inside a tumor cell that can evolve 
through its plasticity as a tangible mechanism for rapid 
resistance. This evolution can also occur by further genomic 
mutations that typically occur at longer timescales, in the 
order of many months to years. Moreover, short-term plastic-
ity can occur as a result of more rapidly occurring epigenetic 
changes that affect a network’s connectivity over days, weeks, 
or months.

The ability to rapidly identify the regulatory structure 
of dysregulated networks would enable the rational develop-
ment of more precise therapeutic avenues. The objectives of 
reverse engineering methods are often very different and may 
include the prediction of elementary reaction mechanisms in 
a biochemical pathway,47,48 the prediction of gene regulatory 
networks,49 or the prediction of protein-based signal transduc-
tion networks.9 The theoretical approaches employed by these 
methods also vary widely and may include mass action-based 
kinetics, discrete Boolean logic, or stochastic probabilistic 
approaches.50–53 Regardless of the theoretical underpinnings 
of a reverse engineering methodology, the development of 
predictive reverse engineering methodologies that also include 
protein-based signaling networks as well as information about 
whether a regulatory molecule is activating or inhibiting its 
target is critically needed.
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Our logic-based network approach allowed us to make 
predictions about the “promiscuity” of honokiol in SW480cells 
in the absence of an exact mechanism. Additional experiments 
(including time course data) are needed in order to predict the 
underlying logical circuitry with a higher degree of confidence. 
If such a network is inferred via reverse engineering methods 
or based on an experimentally data driven hypothesis, a logic 
network may also be used to make predictions about the drug’s 
expected potency in specific interactions. If direct or indirect 

interactions are predicted that contain an OR NOT logic gate, 
this implies that the drug is effective but relatively weak com-
pared to the activating molecule. In contrast, an AND NOT 
logic gate would suggest the opposite: a very potent inhibitor 
that will silence the target under most conditions (see.31,54 for 
a more detailed discussion).

The data used in this work were based on published WBs 
performed with or without IR and/or honokiol in SW480cells 
by Ponnurangam et al.5 These authors also performed the 

Honokiol

Honokiol

Radiation

Radiation

OR

B

A

NICD

NICD

hes-g

hes-g

Hes-P

Hes-P

OR

AND

AND

RAS

RAS

JAGGED

JAGGED* = (not Hes-P and not honokiol) or not IR or RAS

JAGGED* = (Hes-P and honokiol) and not IR or RAS

JAGGED

OR

OR

OR

igure4. Two potential mechanisms of honokiol regulation of Notch ligands. In the set of 30,347 candidate networks that fit the SW480 data, only 25 
(0.08%) networks included honokiol activating Jagged, the node representing Notch ligands in our network. In contrast, 30,044 (99.00%) networks 
included honokiol inhibiting Jagged. In all networks, IR inhibited Jagged. (A) A representative Notch circuit from the set of candidate networks where 
honokiol is inhibiting Jagged and () a representative circuit from the set of candidate networks where honokiol is activating Jagged are presented. Logic 
regulations that differ between (A) and () are bolded. Black edges with arrows indicate activating regulations and red edges with blunt ends indicate 
inhibiting regulations.
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same experiments on HCT116cells. While both SW480 and 
HCT116cells are human derived colorectal cancer cell lines 
with K-RAS mutations, there are important oncogenic dif-
ferences between the two cell lines. For example, a mutation 
in adenomatous polyposis coli (APC) is found in SW480 but 
APC is wild type in HCT116.55 APC is a tumor suppressor 
that acts on the WNT pathway56 and may play an important 
role in regulating the Notch pathway.57 It is clear from Sup-
plementary Figure S1 (as well as the data from5) that CDK1, 
MYC, BAX, and HES respond very differently to IR and 
honokiol in the two cell lines.

In addition to the SW480 simulations described, we 
also ran network searches to attempt to infer the network in 
HCT116 cells (Fig. S1B). The best fitting networks found 
with the HCT116 data scored 0.18. In contrast, we found 
thousands of candidate networks that scored a perfect 0.00 
with the SW480 data. As a consequence, we chose to focus on 
the SW480 cell line in this work. We conclude that additional 
signaling pathways not presently included in our model are 
likely activated or deactivated in HCT116, which account for 
the very different responses to IR and honokiol in the two cell 
lines (possibly because of regulatory differences related to the 
tumor suppressor APC). Access to more detailed molecular 
data collected from both cell lines would facilitate additional 
predictions for both cell lines. In an ideal experimental setup, 
data from several perturbation conditions collected at more 
than one time point (eg, 1, 24, and 48hours) will be available 
as well as data from phospho-WBs to provide more accurate 
readouts of protein activation.

From a general reporting perspective, the development 
and wide adoption of a set of minimal reporting standards 
for publication of WB data58 will greatly improve the experi-
mental repeatability of published WB data as well as make it 
easier to use these data for simulation purposes (and to pro-
pose networks that reflect the data). In the Ponnurangam etal 
study,5 the authors were interested in studying the effect of a 
specific chemical agent (honokiol). In cases where a pharma-
cological inhibitor is used with the implicit or explicit intent to 
perturb a node of interest (eg, inhibition of MEK by UO126 
or PD0352901) and observe the downstream effects of silenc-
ing the node, the use of highly specific inhibitors will almost 
always be preferred to less specific inhibitors, to limit non-
specific interactions. In addition, the use of clustered regularly 
interspaced short palindromic repeats (CRISPER) to gener-
ate true molecular knockouts will likely be preferred in the 
near future as the method of choice over short hairpin RNA 
knockdowns for the collection of experimental data to use as 
part of reverse engineering computational methods.

It must be emphasized that all modeling is an 
approximation of some type. Criticisms of the Boolean 
approach are frequently related to the reality that logic models 
provide only qualitative approximations of molecular regula-
tion. Although this is a limitation, the majority of experimen-
tal data available on molecular regulations are also qualitative. 

Logic models have arbitrary time units, which need to be stan-
dardized to biological time. The standardization is non-trivial 
and is dependent on the model size and structure.31 Building 
more detailed kinetic models of signaling pathways requires 
knowing a priori the mechanism of interaction between pro-
teins and guessing unknown kinetic constants or estimating 
parameters of the interactions. Thus far, such information is 
available only for a limited number of well-characterized pro-
teins. Once this information is available for most of the protein 
and enzymes in signaling pathways, it can be built into more 
realistic models of cancer.59 In the meantime logic models 
represent a parameter free compromise between mass action 
kinetics based models and correlative statistical models.31

In many cases, cells use digital yes-or-no decisions, 
such as transmission of electric impulses by neurons, which 
are either ON or OFF depending on the signals a neuron 
received.60 The activation of cellular stress is also triggered 
in an on-or-off fashion.61 In other cases, cellular signals are 
analog, with levels of gradation.62 These continuous changes 
in protein concentrations enable fine control of metabolism or 
gene expression. The reality is that cells use a hybrid approach 
to information processing.60 Although, we do not yet fully 
understand how the hybrid information processing system 
works inside cells, it would not be surprising if cells turn all 
signals into a digital form. Analog signals can be turned into 
digital form by sampling the signal at some interval. The more 
frequent the sampling is, the better digital signals approxi-
mate their analog counterparts. The evolutionary advantage 
of digital signal processing is that responses will always be 
more robust to noise and repeatable. For the same reasons that 
manufactured electronic circuits evolved from analog circuits 
to almost exclusively digital ones (which are now ubiquitous in 
our everyday lives), it is conceivable that biological evolution 
has also favored digital processing.

Ideally, in the not too distant future, we will routinely 
be able to sample cells from a variety of locations within a 
patient’s tumor, collect key molecular readouts, and run algo-
rithms that accurately predict how each area of the tumor is 
likely to respond to a given therapy. It may be that most of 
a tumor will respond well to standard therapy but a specific 
sub-clonal population may possess network adaptions that 
will render it resistant to the therapy. Through the course of 
treatment, only these cells would survive, leading ultimately 
to recurrence of a highly resistant tumor. Thus, continuing to 
develop computational methods that integrate experimental 
readouts of molecular state to infer intracellular circuitry is of 
vital importance for the realization of rationally driven per-
sonalized medicine.

Methods
The general methodology followed is summarized in 
Figure5.

Logic network modeling. Logic network simulations 
used an asynchronous random order update,28,31 which samples 
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from many timescales and is appropriate for simulating the 
variation in a population of cells.31,63–65 Additional details on 
the asynchronous modeling approach used are provided in the 
Supplementary file. The output of an asynchronous simula-
tion with n replicate networks is a probability a node will be 
activated (ON) in the steady state. Nodes that are oscillating 
as part of a limit cycle will produce non-zero probabilities that 
are less than 1.0. The data used for fitting in this work only 
include a single time point. Without additional time points, it 
is not possible to make predictions about oscillatory behavior 
from the published data.

iscretization of data. The predicted model of Notch 
signaling relied on the published WB data collected from 
SW480cells in Ponnurangam etal.5 Before proceeding with 
network fitting (via the GA search described below), it was 
necessary to discretize the experimental input data. WB is 
a qualitative assay, and efforts to exactly quantitate protein 
levels by WB can be misleading for a variety of reasons.58,66 
Because logic models are qualitative models based on digital 
signals, they are well suited for qualitative data. A two-state 
logic model assumes that for each node in a network, there is 
a threshold above which the node is active (ON) and below 
which it is mostly inactive (OFF). In general, faint or absent 
blots can be easily assigned OFF values and prominent blots 
can be assigned ON values. These assignments cannot always 
be easily made via visual inspection, however. The approach 
used to infer the state of each protein in this work relied on 
ImageJ67 and was based on a semi-quantitative densitometric 
method (which is described in detail in Supplementary file). 
From these data, an adjusted relative density for each protein 
under each condition was calculated. In order for a protein to 
be considered ON in an experimental condition, the following 
two conditions were required to be true of the protein blot: (1) 
the total signal for the protein in a given condition was at least 

25% of the average signal measured for the protein across all 
four experimental conditions and (2) the adjusted relative den-
sity was at least 20%. The threshold approach used is similar to 
discretization approaches used elsewhere.68,69

Supplementary Tables S1 and S2summarize the densito-
metric data used to infer whether a protein was ON or OFF in 
the published SW480 and HCT116WB data,5 respectively. 
From examining the WB data in Ponnurangam etal.5 as well 
as the discrete form of these data (Supplementary Fig. S1), it is 
clear that the SW480 and HCT116cells respond very differ-
ently to the four experimental conditions.

omparing network output to observed data. A scaled 
penalty was assessed based on how well simulated model out-
put matched experimentally observed data:


penalty n t

N Tt

T

n

N
= −

×






=

=

=

=

∑∑ | Sim Obs( , ) |
1

1

4

1

8

( , ) n t

where n is the node, t is the test condition, N is the total num-
ber of nodes evaluated, T is the total number of test conditions, 
Sim(n, t) is the simulated value of the n-th node in the t-th test 
condition, Obs(n, t) is the experimentally observed value of 
the n-th node in the t-th test condition. The scaled penalty 
is a value that ranges from 0.0 to 1.0. Values of 0.0indicate a 
perfect fit with observed data, while values of 1.0indicate that 
the fit was wrong for all nodes in all test conditions. For the 
network and test conditions evaluated in this paper, N=8 and 
T=4. Therefore, the penalty was always scaled by 32.

Network searches. Because the search space of all pos-
sible logic networks for a set of hypothesized interactions is 
extremely large, a constraint-based search was used to identify 
candidate networks that fit the experimental data. The search 
was implemented as a GA45 where a fitness function assessed 
the penalty of each simulated network (using the asynchronous 
logic simulation described above and in Supplementary file). 
GAs were run for at least 100generations and repeated at least 
three times to attempt to identify as many candidate networks 
(with a penalty of 0.0) as possible. Logic search space gen-
eration was based on the number of possible regulators each 
node in the network could potentially have (Supplementary 
Fig. S1). For each node in the network, all logic regulation 
rules that could be formed between potential regulators of the 
node (as wells as all subsets of these regulators) by the AND, 
OR, and NOT logic operators were generated. The total net-
work search space is defined by the number of ways the set 
of potential regulations for all nodes in the network can be 
combined to make a unique network. As the number of poten-
tial regulators increase in a network, the network search space 
grows exponentially large. Additional details are provided in 
the Supplementary file.

omputing environment. A Python-based library was 
written to support the network inference search and imple-
mentation of the GA. The library supports distributed com-
puting using message passing interface (MPI) for Python. 

Input

Literature
knowledge

Hypothesized
interaction

network

Generate
logic search

space

Data
discretization

Data from
perturbation
experiments

Network search
by genetic
algorithm

Predict
network

interactions

Additional experiments to refine
candidate networks

Algorithm

igure5. General workflow of methodology used. Data from 
Ponnurangam etal.5 were discretized into binary ON or OFF values and 
served as input to the network search algorithm. An initial interaction 
network was hypothesized from literature knowledge and also used 
as input to the network search algorithm. The algorithm consists of a 
constraint-based search over all possible logic network configurations 
that can be made from the nodes in the interaction network. A set of 
networks is predicted that match the experimental data. The dotted line 
indicates the need for additional experiments to distinguish between the 
set of candidate networks predicted.
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All distributed simulations were run on the University of 
Michigan’s high performance computing cluster using Intel 
Nehalem/i7 Cores.
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