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(−)-Epigallocatechin-3-gallate (EGCG) is the main bioactive catechin in green tea. The
antitumor activity of EGCG has been confirmed in various types of cancer, including lung
cancer. However, the precise underlying mechanisms are still largely unclear. In the
present study, we investigated the metabolite changes in A549 cells induced by
EGCG in vitro utilizing liquid chromatography-mass spectrometry (LC-MS)-based
metabolomics. The result revealed 33 differentially expressed metabolites between
untreated and 80 μM EGCG-treated A549 cells. The altered metabolites were involved
in the metabolism of glucose, amino acid, nucleotide, glutathione, and vitamin. Two
markedly altered pathways, including glycine, serine and threonine metabolism and
alanine, aspartate and glutamate metabolism, were identified by MetaboAnalyst 5.0
metabolic pathway analysis. These results may provide potential clues for the
intramolecular mechanisms of EGCG’s effect on A549 cells. Our study may contribute
to future molecular mechanistic studies of EGCG and the therapeutic application of EGCG
in cancer management.
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INTRODUCTION

As one of the most common cancers globally, lung cancer causes a severe social burden (Ferlay et al.,
2015; Siegel et al., 2016).Worldwide, an estimated 2.2 million new lung cancer cases occurred in 2020
(Sung et al., 2021). As the second most commonly diagnosed cancer, lung cancer remained the
leading cause of cancer death, with an estimated 1.8 million deaths in 2020 (Sung et al., 2021).
Despite significant advances that have been made in the interventions, including surgery, radiation
therapy, chemotherapy, targeted therapy, and immunotherapy on lung cancer, the 5 years survival of
lung cancer only remains 21% (Miller et al., 2019; Siegel et al., 2021). It is critical to consider other
preventive and therapeutic measures for lung cancer not only to decrease its incidence and mortality
but also to overcome the toxicity, side effects, and cost of existing treatments (Hirsch et al., 2017).

Epigallocatechin-3-gallate (EGCG) is the most abundant and effective catechin in numerous types
of white tea and green tea (Sano et al., 2001; Tang et al., 2019). It has been shown that EGCG can
inhibit tumor growth and stimulate cancer cell apoptosis in various human cancers in vivo and vitro
studies (Huh et al., 2004; Chen et al., 2016; Yang et al., 2016; Huang et al., 2017; Liu et al., 2017;
Borutinskaite et al., 2018; Gan et al., 2018; Zhou et al., 2018; Wei et al., 2019; Wu et al., 2019;
Yoshimura et al., 2019; Almatroodi et al., 2020; Panji et al., 2021; Romano and Martel, 2021). Many
studies have demonstrated that EGCG may take a role in the initiation, promotion, and progression
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of cancer through the modulation of various mechanisms,
including cellular proliferation, differentiation, apoptosis,
angiogenesis, and metastasis, which leads to its
anticarcinogenic activities (Chen and Dou, 2008; Ma et al.,
2013; Luo et al., 2014; Luo et al., 2017; Moradzadeh et al.,
2018; Pal et al., 2018; Li et al., 2019; Almatroodi et al., 2020;
Yin et al., 2021). Increasing evidence has shown that EGCG
possesses anti-tumorigenic property against non-small cell lung
cancer (Sonoda et al., 2014; Shi et al., 2015; Gu et al., 2018; Hu
et al., 2019). Even though the antitumor activity of EGCG in lung
cancer has been extensively investigated, the underlying
mechanism remains unclear.

Metabolomics is an exciting tool to detect small metabolic
compounds and monitor small global molecule endogenous
metabolite changes induced by biochemical reactions in
biological systems (Dunn et al., 2011; Griffin et al., 2011;
Reaves and Rabinowitz, 2011; Gu et al., 2012; Carroll et al.,
2015; Zampieri et al., 2017; McCartney et al., 2018; Yan and Xu,
2018; Yeung, 2018; Shi et al., 2019; Eghlimi et al., 2020; He et al.,
2020; Lim et al., 2020; Wei et al., 2021). Metabolomics is a
promising approach to searching potential biomarkers and
novel therapeutic strategies for lung cancer (Luengo et al.,
2017; Seijo et al., 2019; Noreldeen et al., 2020; Schmidt et al.,
2021). To date, the precise molecular mechanisms of antitumor
activity in lung cancer induced by EGCG still keep unclear and
need more investigation, especially from a metabolism point of
view. Therefore, in this study, we applied liquid chromatography-
mass spectrometry (LC-MS) based metabolomics and employed
A549 cells as an in vitro model to further explore the effect of
EGCG on lung cancer cell metabolism.

MATERIALS AND METHODS

Reagents and Materials
EGCG was purchased from Sigma-Aldrich (St. Louis, MO,
United States). A549 cell line (ATCC NO. CCL-185) was
purchased from American Type Culture Collection (ATCC,
Manassas, VA, United States). The Cell Counting Kit-8
(CK04-05) was obtained from Dojindo Molecular
Technologies (Gaithersburg, MD, United States). 4′,6-
diamindino-2-phenylinodole (DAPI) staining kit was
purchased from FcmacsBiotechCo., Ltd. (Jiangsu, China).
BCA™ Protein Assay Kit was obtained from Thermo Scientific
(Waltham, MA, 84 United States). LC-MS-grade isopropanol
(IPA), acetonitrile (ACN), MeOH, and CH2Cl2 were purchased
from Fisher Scientific (Pittsburgh, PA). HPLC grade acetic acid,
U-13C glucose, N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide (MTBSTFA), methoxyamine
hydrochloride, ammonia acetate, anhydrous pyridine, and
dimethyl sulfoxide (DMSO) and all of the standard
compounds used for metabolic identification were acquired
from Sigma-Aldrich (St. Louis, MO, United States).

Cell Culture
The A549 cells were cultured in Dulbecco’s modified eagle
medium (DMEM) (Corning, 10-013-CV) supplemented with

10% fetal bovine serum (FBS) (Corning, 35-010-CV). Cells
were grown at 37°C and 5% CO2 in a humidified atmosphere.

Cell Viability Assay
Cells were seeded in 96-well plates (8.0 × 103 per well) and treated
with different concentrations of EGCG (20, 40, 60, 80, 100, 120,
160, 200 μM) for 24 h. After treatment, the viability of A549 cells
was measured via the Cell Counting Kit-8 assay. Briefly, 10 μl of
CCK-8 reagents were inserted into each well before incubation in
an incubator with 5% CO2 at 37°C for 3 h. Subsequently,
absorbance at 450 nm was measured using a microplate reader
(Molecular Devices, CA, United States). Viability is expressed as a
cell activity percentage between the EGCG group and the
control group.

LC-MS Metabolomics Analysis
In this study, we utilized a pathway-specific LC-MS method that can
cover more than 300 metabolites from >35 metabolic pathways
(Carroll et al., 2015; Gu et al., 2015; Sperber et al., 2015; Li et al.,
2018; Jasbi et al., 2019; Liu et al., 2019; Shi et al., 2019). Briefly, A549
cells were seeded in 6-well plates (4.5× 105 cells/well) with 10% FBS
supplemented with DMEM. Then, cells were incubated overnight in
an incubator with 5% CO2 at 37°C. The cells were then treated with
EGCG for 24 h. For sample preparation, the cells were first rinsed
with PBS. Then 1.2 ml of 80% MeOH was added into each well for
extraction of intracellular metabolites. Samples were completely lysed
using an ultrasonic homogenizer in an ice bath for 20min and
centrifuged at 14,000 rpm under 4°C for 10min. Following that,
500 μl of each supernatant was retained and dried under vacuum for
4 h. The dried samples were reconstituted using 150 μl of solvent
(PBS: ACN � 4:6) and then centrifuged at 14,000 rpm under 4°C for
10min. Sets of samples of identical volume were combined for
quality-control specimens solvent (B) to assess instrument
performance.

The supernatants were analyzed by liquid chromatography-
mass spectrometry (LC-MS) simultaneously after centrifugation.
100 μl of the supernatant was transferred to a new vial and
analyzed by an Agilent 1290 LC-6490 Triple Quadrupole mass
spectrometer system equipped with an electrospray ionization
(ESI) source. LC was performed on aWaters XBridge BEHAmide
column (150 × 2.1 mm, 2.5 µm particle size, Waters Corporation,
Milford, MA). The mobile phase for chromatographic separation
was composed of solvent (A): 10 mM ammonium hydroxide,
10 mM ammonium acetate in 95% H2O/5% ACN, and solvent
(B): 10 mM ammonium hydroxide, 10 mM ammonium acetate in
95% ACN/5% H2O. Following a 1 min isocratic elution of 90%
solvent (B), solvent (B) was gradually reduced to 40% in 10 min
(t � 11 min) and then kept at 40% for 4 min (t � 15 min).
Subsequently, solvent (B) was returned to 90% to run the next
sample. Each sample was injected twice, 4 μl for positive ion
electrospray ionization analysis and 10 μl for negative ion
analysis. Multiple reaction monitoring (MRM) mode was
employed for targeted data acquisition.

The QQQ-MS system was operated with a capillary voltage of
3.5 kV. The nebulizer gas (N2) pressure was set at 30 psi with a
drying gas (N2) flow rate of 15 L/min, and the temperature was
175°C. The flow rate of sheath gas (N2) was set to 11 L/min with a
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temperature of 225°C. A CE range of 5–50 V in increments of 5 V,
and 4 CAV values (2 V, 4 V, 6 V, 8 V) were evaluated for MRM
optimization; optimized CE and CAV values were determined
from the highest MRM response.

The software programs used to control the LC-MS system and
integrate extracted MRM peaks were Agilent MassHunter
Workstation and Agilent MassHunter Quantitative Data
Analysis, respectively. Protein concentrations in each sample
were utilized to normalize metabolite levels.

The post-preparative stability of the sample was tested by
running five prepared quality control (QC) samples kept in an
autosampler (maintained at 4°C). In addition, one QC sample was
inserted every 3–4 test samples during the whole process to
validate system suitability and stability.

Statistical Analysis
Measurement data are the mean ± standard deviation (SD) and
analyzed via the Student’s two-tailed t-test or one-way analysis of
variance (ANOVA) with Tukey’s post hoc analysis, and p < 0.05
was considered as a significant difference.

Principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), pathway analysis overview, and
heatmap clustering of altered metabolic profiling analysis were
performed using MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/
). In pathway analysis, “Homo sapiens (KEGG)” librarywas selected, as
well as Hypergeometric test for pathway enrichment analysis and
relative betweenness centrality for pathway topology analysis.

RESULTS

EGCG Suppressors Cell Viability of A549
Cells
After exposure to EGCG for 24 h, the A549 cell viability was
downregulated in a dose-dependent manner within the

concentration range of 60–100 μM (Figure 1). Cell viability
was 92.10 ± 3.23% at 40 μM (p < 0.05) and reduced to
60.01 ± 4.02% at 80 μM (p < 0.005). As shown in
Supplementary Figure S1, abnormal nucleus margin and
shortening of nucleus diameter occurred at EGCG exposure
groups, especially at the concentrations of 100 μM.
Considering the balance between cell viability and data
interpretability, a concentration of 40 μM was chosen for
further experiments. The concentration of 80 μM was also
selected in the subsequent metabolomics experiments to help
capture more responses on cell metabolism related to the effect
of EGCG.

LC-MS Metabolite Profiling of A549 Cells
After EGCG Treated
LC-MS of Metabolic Profiles
In total, we found that 173 metabolites were reliably detected with
relative abundances >1,000 inmore than 80% of all samples. After
normalization by averaged values from the QC injection data, 142
metabolites had a coefficient of variation (CV) value of <30%.We
analyzed the metabolic profiles of these 142 metabolites of 40 μM,
80 μM EGCG-treated and untreated A549 cells. Based on the LC-
MS data, the PCA score plot of metabolites showed an obvious
separation among the control group, 40 μM EGCG-treated
group, and 80 μM EGCG-treated group (Figure 2A). No
outlier detection was performed from the data overview. PLS-
DA was further undertaken to reveal the metabolic deviations
between the EGCG-treated groups and the control group. As
shown in Figure 2B, the metabolite profiles of the three groups
were distributed in significantly separated clusters. Although it is
a supervised classification method, component 1 and component
2 in the PLS-DA model (Figure 2B) accounted for 23 and 22.9%
of the total variance in the data respectively, which indicated that
significant metabolic disturbances were induced in A549 cells
treated by EGCG.

As the volcano plot shows (Figure 3, Supplementary Figure
S2), the up-regulated metabolites between the control and the
EGCG exposure groups were presented on the right-hand side of
the valley, while the left-hand side of the valley represents those
that were down-regulated. The number of significantly altered
metabolic abundances in the 80 μM group was greater than that
in the 40 μM group, which indicated that EGCG disturbed the
A549cells in a dose-dependent manner. The ANOVA test
analysis was utilized to identify potential biomarkers
contributing most to the difference between control and the
EGCG-treated groups. The results with metabolites (p < 0.05)
are shown in Table 1 and separately in Figure 4. The top 25
significantly changed metabolites were visualized using a heat
map in a red-blue scale (from higher to lower metabolite levels)
(Figure 5). In pairwise comparison, metabolites with a p-value
below 0.05 and fold change above 1.5 or below 0.75 were selected
as potential biomarkers. As shown in Supplementary Table S1,
the identified metabolites were summarized, and a total of 11
features were selected as potentially altered metabolite markers in
A549 cells exposed to 80 μM EGCG compared with the control
group. In addition, all of the disturbed metabolites with p < 0.05

FIGURE 1 | Cell viability of A549 cells after EGCG exposure. A549 cells
were exposed to 20–200 μMEGCG for 24 h, and cell viability was determined
utilizing a CCK-8 assay. The experimental data are expressed as the mean
value with SD of three independent replicates. (*p < 0.05, **p < 0.005).
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in 80 μM EGCG-treated A549 cells compared to controls were
summarized in Table 2. The corresponding results between the
40 μM EGCG-treated group and the control group are shown in
Supplementary Tables S2, S3 respectively.

Analysis of Metabolic Pathways
We used MetaboAnalyst 5.0 and metabolites with p < 0.05 to
analyze metabolic pathways. Compared to the control group, 27
metabolic pathways were affected (Supplementary Table S4) in
the 80 μM EGCG-treated group. Of these, two markedly altered
pathways were filtered according to specific criteria (raw p < 0.05
and impact value >0.2): Glycine, serine and threonine
metabolism (impact value � 0.628), Alanine, aspartate and
glutamate metabolism (impact value � 0.272). Each metabolic
pathway was represented by a colored circle within the diagram.
As shown in Figure 6 and Supplementary Table S4, EGCG
induced significant perturbations in Glycine, serine and
threonine metabolism, Alanine, aspartate and glutamate
metabolism, Aminoacyl-tRNA biosynthesis, Glyoxylate and
dicarboxylate metabolism, Arginine and proline metabolism in
the 80 μM EGCG group (Figure 6), as well as Histidine
metabolism, arginine and proline metabolism in the 40 μM
EGCG group (Supplementary Figure S3).

DISCUSSION

The anticancer ability of EGCG has been shown to be related to
its antiproliferative and proapoptotic effects (Ahmad et al., 1997;
Khan et al., 2006;Ma et al., 2013; Pal et al., 2018; Almatroodi et al.,
2020). Similar to previous reports (Jiang et al., 2016; Li et al.,
2016), our data suggest that EGCG concentrations at 40 μM or
greater showed evident cell growth inhibition on A549 cells
compared to the control group. Considering the balance
between cell viability and data interpretability and exploring
cell metabolism changes caused by different concentrations of
EGCG, 40 and 80 μMwere chosen for further experiments in this

FIGURE 2 | Score plots of PCA (A) and PLS-DA (B) models for the metabolome data obtained by LC-MS, showing the metabolic profile differences between
control and EGCG-treated groups. Red cycle: control group; green cycle: 40 μM EGCG-treated group; blue cycle: 80 μM EGCG-treated group.

FIGURE 3 | Volcano plot analysis of differential metabolites in A549 cells
after exposure to 80 μMEGCG. The x-axis represents log2 (fold change), while
the y-axis represents p-value in -log10 scale. The significantly up-regulated
metabolites were indicated in red squares and down-regulated in green
triangles. (p < 0.05 and fold change >1.5 or <0.75).
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study, corresponding to 92 and 60% survival rate respectively
(Chu et al., 2018; Daskalaki et al., 2018; Zhang et al., 2020). It has
been proved that treatment with green tea-based food
supplements has acceptable safety, but high doses of EGCG
can induce certain toxic side effects (Peter et al., 2017). Intake
up to 300 mg EGCG/person/day is a tolerable upper intake level
proposed for food supplements (Dekant et al., 2017). In a
previous study, the maximum plasma concentration of EGCG
was 695.8 ng/ml after receiving oral EGCG in 10 day’s repeated
doses of 400 mg (Ullmann et al., 2004).

Studies have demonstrated various biological and
pharmacological activities of EGCG, such as antioxidant, anti-
inflammatory, antiangiogenic, antiproliferative, proapoptotic,
and antimetastatic properties (Gu et al., 2013; Lee et al., 2013;
Zhang et al., 2013; Chen et al., 2016; Liu et al., 2016; Fujiki et al.,
2017; Almatroodi et al., 2020). In vitro, EGCG has been shown to
inhibit growth by increasing the percentage of cells at the G0/G1
phase of the cell cycle (Fujiki et al., 2017) and inhibit epithelial-
mesenchymal transition and migration via downregulation of
HIF-1α, VEGF, pAkt/ERK, COX-2 and vimentin in A549 lung
cancer cell (Shi et al., 2015). Also, research has shown that EGCG
stimulates apoptosis in the H1299 lung cancer cell line by
inhibiting the activation of PI3K/Akt serine/threonine kinase 1
signaling pathway (Gu et al., 2018). One study demonstrated that
the inhibition of A549 cell proliferation by EGCG might be
achieved via suppressing the expression of the cell death-
inhibiting gene, Bcl-xL (Sonoda et al., 2014). Another study
showed EGCG also upregulated the expression of the
apoptosis-promoting factor Bax by regulating Ku70 acetylation
that blocks the interaction between Ku70 and Bax (Li et al., 2016).
The amino acids alanine and glutamate were found to be
significantly up-regulated in apoptotic HepG2 and HEK293
cells irrespective of the apoptosis inducer (Halama et al.,
2013). Disturbed alanine, aspartate and glutamate metabolism
in A549 cells under 80 μM EGCG exposure in this study may be
related to the proapoptotic effect of EGCG. Long non-coding
RNAs (lncRNAs) have emerged as new players in the cancer
paradigm. Real-time quantitative reverse transcription-
polymerase chain reaction proved a downregulation of

HMMR-AS1, AL392089.1, PSMC3IP, and LINC02643 lncRNAs
and upregulation of RP1-74M1.3, AC087273.2, SNAI3-AS1,
LINC02532, and AC007319.1 lncRNAs in A549 cell lines
treated with EGCG (Hu et al., 2019). Various lncRNAs,
mRNAs, or proteins regulated by EGCG identified in these
studies could affect the metabolic results of A549 cells.
Synergistic inhibition of lung cancer cells by EGCG with other
drugs has also been reported, such as leptomycin B (Cromie and
Gao, 2015), NF-κB inhibitor BAY11-7082 (Zhang et al., 2019),
gefitinib (Meng et al., 2019), and cisplatin (Jiang et al., 2016).
However, the precise underlying mechanisms of the antitumor
activity of EGCG in lung cancer are still largely unclear.

In this study, we used a metabolic approach to further uncover
the likely mechanisms underlying the anticancer activity of
EGCG in A549 cells. This approach led us to identify 32
differential metabolites (15 upregulated/17 downregulated) in
the 80 μM EGCG treated group compared to the control
(Table 2). Among the identified metabolites, 11 compounds
were significantly changed (fold change >1.5 or <0.75)
(Supplementary Table S2). Glycine, serine and threonine
metabolism and alanine, aspartate and glutamate metabolism
were the two most significantly disturbed pathways under 80 μM
EGCG exposure. Histidine metabolism and arginine and proline
metabolism were the two most significantly disturbed by
exposure to 40 μM EGCG. A schematic diagram of the
modulated metabolites and potential disturbed metabolic
pathways is shown in Figure 7. A more specific analysis of
metabolites is as follows.

Energy Metabolism
In this study, the metabolomics data suggested that EGCG altered
the cellular energy metabolism of A459 cells through glycolysis
and the tricarboxylic acid (TCA) cycle. Consumption of glucose
by tumors increased markedly compared to the nonproliferating
normal tissues to meet the biosynthetic demands associated with
proliferation (Warburg et al., 1927). Usually, cancer cells
predominantly use glycolysis rather than the TCA cycle for
energy production, a phenomenon known as the Warburg
effect (Panieri and Santoro, 2016). In previous studies, EGCG

TABLE 1 | Significantly altered metabolites among the control and the EGCG-treated groups by ANOVA test analysis with Tukey’s post hoc analysis.

p. value Tukey’s HSD

4-Imidazoleacetic acid 4.970E-07 40 μM-0 μM; 80 μM-0 μM
Glutathione reduced 3.730E-06 40 μM-0 μM; 80 μM-0 μM
Agmatine 1.160E-05 40 μM-0 μM; 80 μM-0 μM
Cytosine 2.710E-05 40 μM-0 μM; 80 μM-0 μM
Aspartate 1.126E-04 40 μM-0 μM; 80 μM-0 μM
2-Deoxycytidine 1.900E-04 40 μM-0 μM; 80 μM-0 μM
2/3-Aminoisobutyric acid/Dimethylglycine 3.167E-04 40 μM-0 μM; 80 μM-0 μM
Proline 3.484E-04 40 μM-0 μM; 80 μM-0 μM
6-Methyl-DL-Tryptophan 4.916E-04 80-0 μM
Serine 0.001 80-0 μM
R5P 0.001 80-0 μM
2-Methylglutaric acid 0.001 40 μM-0 μM; 80 μM-0 μM
Asparagine 0.001 80-0 μM
Acetohydroxamic acid 0.002 80-0 μM

R5P, Ribose-5-phosphate.
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significantly reduced lactate production, anaerobic glycolysis,
glucose consumption and glycolytic rate in pancreatic
adenocarcinoma MIA PaCa-2 cells (Lu et al., 2015). A
decrease in glycolysis intermediate glyceraldehyde 3-phosphate

was observed in 80 μM EGCG induced cells compared with
control cells in this study. However, there were no significant
differences in glycolysis intermediates such as glucose-6-
phosphate/fructose-6-phosphate (G6P/F6P) and lactate

FIGURE 4 | Significantly altered metabolites among the control and the EGCG-treated groups. The bar plots on the left show the original peak intensity values
(mean ± SD). The box and whisker plots on the right summarize the normalized values.

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 7327166

Pan et al. Metabolomics of EGCG on A549

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


between the control group and EGCG induced group, neither
40 μMnor 80 μM. Interestingly, phosphoenolpyruvate (PEP) was
found to increase in the 40 μMgroup compared to the control. An

increase in Glucose-6-phosphate isomerase (GPI), ATP-
dependent 6-phosphofructokinase platelet type (PFK-P) and
fructose-bisphosphate aldolase A (ALDA) were detected by

FIGURE 5 | Hierarchical clustering heat map of the top 25 differential metabolites selected based on t-tests/ANOVA, with the degree of change marked with red
(up-regulation) and blue (down-regulation). The distance measure was set to “Euclidean” and the clustering algorithm was set to “Ward”. (A): control group, 40 μM
EGCG-treated group and 80 μM EGCG-treated group; (B): control group and 40 μM EGCG-treated group; (C): control group and 80 μM EGCG-treated group.
Abbreviations: R5P, Ribose-5-phosphate; 4-ImAA, 4-Imidazoleacetic acid; NAD, nicotinamide adenine dinucleotide; PEP, phosphoenolpyruvate; 2-MGA, 2-
Methylglutaric Acid; GA3P, glyceraldehyde 3-phosphate; GSH, glutathione; DMG, Dimethylglycine; Aib, 2/3-Aminoisobutyric acid; alpha-KG, alpha-Ketoglutaric acid;
AHA, Acetohydroxamic acid.
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Wu et al. (2017) in Dox-induced senescent cells compared with
control cells, suggesting an up-regulation of the glycolytic
pathway during senescence. So, we couldn’t refuse the
assumption that the inhibitory effect on glycolysis may be
counteracted by induced cell senescence in our research.

Ribose-5-phosphate, which can be generated by the pentose
phosphate pathway (PPP), a constituent of nucleotides, was
found to increase in the 80 μM group compared to the
control. Wu et al. (2017) also found the activation of PPP in
senescent cells. We could infer that A549 cells would produce
more nucleotide precursors to fulfill the increased need for
nucleosides for DNA damage repair by activating PPP when
challenged with EGCG treatment.

Our data revealed an elevated level of Uridine diphosphate-N-
acetylglucosamine (UDP-Glc-NAc) in the 80 μM EGCG induced
group compared to the control one. UDP-Glc-NAc is the end
product of a well-established pathway for nutrient sensing-the
hexosamine biosynthetic pathway (HBP) and also the donor
substrate for modification of nucleocytoplasmic proteins at
serine and threonine residues with N-acetylglucosamine
(O-GlcNAc) (Wells et al., 2003). Elevated HBP has been
reported in cancers and much evidence suggests the HBP
helps fuel cancer cell metabolism, growth, survival, and spread

(Ferrer et al., 2016; Akella et al., 2019). Interestingly, not only in
the cancer cells but also in senescent cells, up-regulation of HBP
has been suggested (Wu et al., 2017). The reason for the up-
regulation of the UDP-Glc-NAc induced by EGCG in A549 cells
needs to be further explored.

The tricarboxylic acid (TCA) cycle is the main pathway of
glucose degradation and the primary energy supplier for universal
organisms. The 80 μM EGCG induced group showed a down-
regulated TCA cycle activity in the A549 cell line, manifested as a
decrease in two main TCA cycle intermediates: α-ketoglutarate
and isocitrate. However, we didn’t find similar down-regulated
TCA cycle intermediates in 40 μM EGCG induced group. This
suggested that downregulated TCA cycle in A549 cells induced by
EGCGmay be dose-dependent and relates to the downregulation
of cell viability.

Amino Acid Metabolism
TCA cycle provides metabolic precursors for the biosynthesis of
non-essential amino acids, including aspartate and asparagine. In
our study, the level of aspartate and asparagine was increased in
80 μM EGCG induced group, which indicated that there were
other ways to supplement the synthesis of aspartic acid.

The significantly increased expression of 4-Imidazoleacetic
acid (histidine’s metabolite) was observed in EGCG-treated A549
cells, which implied the disturbance of histidine metabolism. The
presented evidence indicates that histamine is an important

TABLE 2 | The disturbed metabolites with p < 0.05 in 80 μM EGCG-treated A549
cells compared to controls.

Metabolite p. value Fold change

Agmatine 8.640E-06 0.48
4-Imidazoleacetic acid 2.220E-05 18.13
Glutathione reduced 6.860E-05 0.39
Cytosine 1.360E-04 0.50
2/3-Aminoisobutyric acid/Dimethylglycine 2.450E-04 0.73
Aspartate 3.240E-04 1.26
Serine 0.001 1.33
Proline 0.001 1.47
R5P 0.001 1.46
Acetohydroxamic acid 0.001 0.43
2-Deoxycytidine 0.001 0.48
6-Methyl-DL-Tryptophan 0.002 0.73
Asparagine 0.003 1.69
2-Methylglutaric acid 0.004 0.74
alpha-KG 0.014 0.81
Creatine 0.016 0.85
Cytidine 0.019 1.84
Lauric acid 0.020 1.30
Glycine 0.022 1.10
GA3P 0.023 0.69
Acetylcholine 0.023 0.57
Choline 0.026 0.71
Sorbitol 0.026 1.18
IsoCitrate 0.028 0.77
Imidazole 0.030 1.64
Sarcosine 0.030 0.90
Biotin 0.032 0.71
UDP-GlcNAc 0.035 1.22
ADP ribose 0.036 1.34
Adipic acid 0.037 1.44
Pantothenic acid 0.038 0.88
Amino valerate 0.050 1.80

R5P, Ribose-5-phosphate; alpha-KG, alpha-Ketoglutaric acid; GA3P, glyceraldehyde 3-
phosphate; UDP-GlcNAc, Uridine diphosphate-N-acetylglucosamine.

FIGURE 6 | Pathway analysis overview depicting altered metabolic
pathways in A549 cells from control and 80 μM EGCG-treated groups. The
metabolic pathways are displayed as distinctly colored circles depending on
their enrichment analysis scores (vertical axis, shade of red) and topology
(pathway impact, horizontal axis, circle diameter) via MetaboAnalyst 5.0. (A):
Glycine, serine and threonine metabolism, (B): Alanine, aspartate and
glutamate metabolism, (C): Aminoacyl-tRNA biosynthesis, (D): Glyoxylate
and dicarboxylate metabolism E: Arginine and proline metabolism.
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mediator in cancer development and progression (Rivera et al.,
2000), and the effects of histamine’s receptor antagonists on
cancer cell proliferation have been explored (Blaya et al.,
2010). 4-Imidazoleacetic acid is the most apparent upregulated
metabolite among the statistically different metabolites in our
study, by 18.13-fold and 5.36-fold in 80 and 40 μM EGCG
induced group respectively compared to the control group. 4-
Imidazoleacetic acid can be generated from oxidative
deamination of histamine and then transform to aspartate. So,
the increased level of aspartate and asparagine is not strange in
the 80 μM EGCG induced group. Asparagine has also been
reported to potentiate CD8+ T-cell activation and antitumor
responses (Wu et al., 2021). As tumors frequently outgrow
their supply, cancer cells reside in oxygen-poor environments.
Low oxygen activates a transcriptional program that induces
glucose uptake and glycolysis while suppressing the electron
transport chain (ETC) activity (Ackerman and Simon, 2014).
Studies show that aspartate synthesis plays an essential role in the
electron transport chain in cell proliferation (Birsoy et al., 2015;
Sullivan et al., 2015). Therefore, aspartate may be a limiting
metabolite for tumor growth, and aspartate availability may be
targeted for cancer therapy (Garcia-Bermudez et al., 2018).

The metabolites of arginine are involved in multiple pathways.
Creatine participates in ATP production, whereas ornithine can
be converted to putrescine and spermidine for cell proliferation
(Wei et al., 2001; Abraham et al., 2013). Ornithine can also be
converted to proline and hydroxyproline for collagen formation
and new extracellular matrix deposition (Tan et al., 1983). A
meta-analysis of metabolic enzyme expression across diverse
tumor types identified pyrroline-5-carboxylate reductase
(PYCR1), the principal enzyme in proline biosynthesis, as one

of the most commonly overexpressed genes in tumors (Nilsson
et al., 2014). Compared with the normal, increased levels of
spermidine (in 40 μM EGCG induced group) and proline
(both in 40 and 80 μM EGCG induced group) were found in
our research. However, the level of CTP itself was not changed. In
addition, we found decreased levels of creatine in the 80 μM
EGCG induced group, another metabolite of arginine which
participates in ATP production (Abraham et al., 2013).
Agmatine, which can be converted from arginine by the action
of arginine decarboxylase on the cell mitochondrial membrane,
was also found to decrease in the EGCG group. Agmatine can
induce a decrease in cell proliferation due to decreased
intracellular levels of polyamines putrescine, spermidine, and
spermine (Higashi et al., 2004). Studies have indicated that
agmatine administration to tumor cells in vitro results in a
suppression of cell proliferation (Molderings et al., 2004;
Mayeur et al., 2005). In our research, the antitumor effect of
EGCG may counteract the endogenous production of agmatine.

Serine is crucial for multiple metabolic pathways required for cell
growth and proliferation, including phospholipid, purine and
glutathione biosynthesis, as well as being a methyl source for
single carbon metabolism. Serine has been reported to be the
third most consumed metabolite by cancer cells after glucose and
glutamine (Jain et al., 2012; Dolfi et al., 2013). When a significant
amount of serine is converted into glycine, serine releases a one-
carbon unit to the one-carbon pool. Glycine could also contribute to
the one-carbon pool through the glycine cleavage system. One-
carbon pathway metabolites contribute to a number of cellular
biosynthetic and regulatory processes. Serine was found to be
elevated in our research and glycine slightly, which may indicate
the decrease consumption of them for one-carbon unit generation.

FIGURE 7 | Schematic diagram of the modulated metabolites and potential disturbed metabolic pathways. Up-regulated metabolites detected are shown in the
orange background; down-regulated metabolites detected are shown in the blue background; blank background means no statistically significant change or
undetected. Abbreviations: PEP, phosphoenolpyruvate; GA3P, glyceraldehyde 3-phosphate; G6P, glucose-6-phosphate; α-KG, alpha-Ketoglutaric acid; R5P,
Ribose-5-phosphate; CTP, cytidine triphosphate; PC, phosphatidylcholine; PE, phosphatidylethanolamine; HBP, hexosamine biosynthetic pathway; PPP,
pentose phosphate pathway; TCA, tricarboxylic acid.
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Nucleotide Metabolism
The change of carbon flow in the metabolic stream will cause the
abnormality of nucleotide metabolism. The increase of serine level can
promote serine-mediated pyruvate kinase 2 (PKM2) activity by
inducing allosteric changes of the enzyme (Mazurek, 2011;
Chaneton et al., 2012). PKM2 reduces the carbon flux into the
serine biosynthesis pathway and the nucleotide biosynthesis
pathway, ultimately affecting nucleotide metabolism (Mazurek,
2011; Chaneton et al., 2012). In our study, the decrease of cytosine
and 2-deoxycytidine in the 80 μMEGCG-treated groupmay be related
to the up-regulation of serine. This trend is not applicable to cytidine,
but it’s not strange when the trend of choline is down-regulated. It has
been reported that the reduction of choline and glutathionemetabolites
is associated with apoptosis (Rainaldi et al., 2008; Halama et al., 2013).
Cytidine is a precursor of cytidine triphosphate (CTP) needed in the
phosphatidylcholine (PC) and phosphatidylethanolamine (PE)
biosynthetic pathways. The down-regulation of choline may lead to
a reduction in cytidine consumption.

From Supplementary Table S3, we can find that adenine was
downregulated by 0.38-fold which was the most obvious reduction
among all the statistically different metabolites in the 40 μM group
compare to the control. Clear signaling roles for extracellular adenosine
have been established in immunomodulation, vascular remodeling, and
promotion of cell growth and proliferation (Chen et al., 2018; Di Virgilio
et al., 2018;Morandi et al., 2018; Antonioli et al., 2019). In recent years, it
has also been found that adenosine can be used as a signal molecule to
affect the biological behavior of tumor cells through different signaling
pathways, such as triggering cell cycle arrest, inducing tumor cell
apoptosis and affecting cell proliferation (Yang et al., 2007).

Glutathione Metabolism
In our study, glutathione expression was downregulated in 80 μM
EGCG-treated group by 0.39-fold compared with that in the control
group. In a metabolomics study of EGCG acting on colorectal cancer
cells (HT-29), glutathione expression was also downregulated in EGCG-
treated cells (Zhang et al., 2020). Generation of reactive oxygen species
(ROS) at high levels can damage nucleotides, proteins and lipids, so
impair cell viability. In cancer cells, glutathione oxidation-reduction
coupled to NADPH reduction-oxidation is a major pathway for ROS
detoxification (Lv et al., 2019). NADPH for ROS turnover through this
pathway can be generated from glucose via the pentose phosphate
pathway or serine via one-carbon metabolism. As analyzed above, the
former one was up-regulated. Taken together, disturbance of glutathione
metabolism is a potential pathway involved in the antitumormechanism
of EGCG.

Vitamin Metabolism
Biotin (vitamin H) is an essential micronutrient vital for normal
cellular function (Livaniou et al., 2000). To thrive and multiply
rapidly, cancer cells need extra biotin compared with normal
cells. Biotin overexpression is observed in wide types of cancer
cells, including renal (RENCA, RD0995), leukemia (L1210FR),
lung (A549, M109), ovarian (OV 2008; ID8), mastocytoma
(P815), and breast (4T1, JC, MMT06056) cancer (Russell-
Jones et al., 2004; Chen et al., 2010; Shi et al., 2014). The
decreased biotin implied a slowdown in the proliferation of
80 μM EGCG-treated A549 cells compared to the control group.

Finally, there are several limitations in the present study.
Firstly, although some previous in vitro studies employed the
A549 cell line to explore the mechanism of the antitumor effects
of EGCG, the A549 cell line cannot represent the true lung cancer
cell environment in vivo. The concentrations of EGCG from 10 to
100 µM used in most of the studies in cell culture systems, as well
as in this paper, are much higher than the concentrations
monitored in human plasma (usually lower than 1 µM) after
tea ingestion. Thus, it is necessary to verify the high concentration
findings in cell lines utilizing lower concentrations in the human
body. Secondly, in metabolomics studies, the differences in
viability between the control and treated cells would affect the
accuracy of the results. The dose of IC50 has been used in the
metabolomics research of toxicology in recent years (Yu et al.,
2019; He et al., 2020; Hou et al., 2020). To capture more responses
on cell metabolism related to the anticancer effect of EGCG and
explore the changes in metabolic processes with increasing EGCG
concentration, the dosages of 40 and 80 μMwere both used in our
metabolomics experiment. Thirdly, even though we used a
pathway-specific LC-MS/MS method that can cover more than
300 metabolites from over 35 metabolic pathways, there were still
many important metabolites left out. This has an impact on the
analysis of metabolic pathways. In addition, quantitative
proteomics is needed to detect whether there was an increase
or decrease in enzymes involved better to explain the
upregulation or downregulation of the metabolic pathway.
Further experiments are needed to investigate the specific
relationship between genetic changes and metabolite changes.

CONCLUSION

In this study, the metabolite changes in A549 cells induced by
EGCG were investigated utilizing LC-MS-based metabolomics.
Our data demonstrated that altered metabolites were involved in
the metabolism of glucose, amino acid, nucleotide, glutathione,
vitamin and especially associated with serine and threonine
metabolism, alanine, aspartate and glutamate metabolism, and
histidine metabolism. These findings contribute to understanding
the intramolecular metabolic processes of A549 cells caused by
EGCG and may provide potential clues for the underlying
mechanisms of the anti-cancer property of EGCG. Further
researches are required for the therapeutic application of
EGCG in cancer management.
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