

An Integrated Strategy for Effective-Component Discovery of Astragali Radix in the Treatment of Lung Cancer

Bing Yang^{1,2,3}, Nan Yang¹, Yaping Chen^{1,3}, Maomao Zhu^{1,3}, Yuanpei Lian^{1,3}, Zhiwei Xiong^{1,3}, Bei Wang^{1,3}, Liang Feng^{1,3}* and Xiaobin Jia^{1,2,3}*

¹School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China, ²Nanjing University of Chinese Medicine, Nanjing, China, ³State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China

OPEN ACCESS

Edited by:

Hai Yu Xu, China Academy of Chinese Medical Sciences, China

Reviewed by:

Yonghua Zhao, University of Macau, China Wenyi Kang, Henan University, China

*Correspondence:

Liang Feng wenmoxiushi@163.com Xiaobin Jia jiaxiaobin2015@163.com

Specialty section:

This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

Received: 07 July 2020 Accepted: 17 November 2020 Published: 14 January 2021

Citation:

Yang B, Yang N, Chen Y, Zhu M, Lian Y, Xiong Z, Wang B, Feng L and Jia X (2021) An Integrated Strategy for Effective-Component Discovery of Astragali Radix in the Treatment of Lung Cancer. Front. Pharmacol. 11:580978. doi: 10.3389/fphar.2020.580978 Lung cancer is one of the most devastating diseases worldwide, with high incidence and mortality worldwide, and the anticancer potential of traditional Chinese medicine (TCM) has been gradually recognized by the scientific community. Astragali Radix (AR) is commonly used in traditional Chinese medicine in the treatment of lung cancer and has a certain clinical effect, but effective components and targets are still unclear. In the study, we established an integrated strategy for effective-component discovery of AR in the treatment of lung cancer based on a variety of techniques. First, the effective components and potential targets of AR were deciphered by the "component-targetdisease" network using network pharmacology, and potential signal pathways on lung cancer were predicted by Gene Ontology (GO) biological function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Then, the therapeutic effects of AR in the treatment of lung cancer were evaluated in vivo using A/J mice, and the potential targets related to autophagy and potential signal pathway were verified by Western blot analysis, immunofluorescence staining, and real-time PCR technology at protein and gene expression level. Finally, metabolism in vitro by rat intestinal flora and cell membrane immobilized chromatography technology were used to screen the effective components of AR in the treatment of lung cancer, and remaining components from the cell immobilized chromatography were collected and analyzed by ultra-performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The screening results of the integrated strategy showed that calycosin-7-O-β-D-glucoside, ononin, calycosin, astragaloside IV, astragaloside II, cycloastragenol, and formononetin may be effective components of AR in the treatment of lung cancer, and they may play a role in the treatment of lung cancer through autophagy and p53/AMPK/mTOR signaling pathway. The integrated

Abbreviations: AR, astragali radix; TCM, traditional Chinese medicine; DDP, cisplatin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; p53, protein 53; p-Bcl-2, phosphorylated B-cell lymphoma-2; mTOR, mammalian target of rapamycin; AMPK, AMP-activated protein kinase; PPI, protein–protein interactions; GO, gene Ontology; KEGG, kyoto encyclopedia of genes and genomes; CSE, cigarettes extract; HE, hematoxylin-eosin; IHC, immunohistochemistry; NHBE, primary normal human bronchial epithelial; UPLC-ESI-TO-MS, ultra-performance liquid chromatography–electrospray quadrupole time-of-flight mass spectrometry.

strategy for effective-component discovery provided a valuable reference mode for finding the pharmacodynamic material basis of complex TCM systems. In addition, the prediction for targets and signal pathways laid a foundation for further study on the mechanism of AR in the treatment of lung cancer.

Keywords: key word: effective components, traditional Chinese medicine, astragali radix, lung cancer, autophagy, potential targets, network pharmacology, cell membrane immobilized chromatography

INTRODUCTION

As a global health burden, lung cancer is the highest incidence cancer at present (Torre et al., 2015; Wang et al., 2019). According to relevant statistics, lung cancer accounts for 19.4% of cancerrelated deaths with 1.59 million deaths each year, which seriously endangers human health (Ke et al., 2019). As estimated by the International Agency for Research on Cancer, the number of deaths caused by lung cancer will raise to 10 million deaths per year by 2030 (Lou et al., 2016). However, the existing therapies, including radiotherapy, chemotherapy, and the emerging target therapy, are still unsatisfactory to improve the survival of lung cancer patients during the last 30 years (Cheng et al., 2018). So, it is an urgently required issue to achieve a breakthrough in medical treatment of lung cancer.

In recent years, the anticancer potential of traditional Chinese medicine (TCM) has been gradually recognized by the scientific community (Jiang et al., 2017; Zhu et al., 2019). In China, TCM is widely used in the treatment of cancer by preventing tumorigenesis, attenuating the toxicity, enhancing the therapeutic effect of radiotherapy and chemotherapy, reducing tumor recurrence, etc. (Wang et al., 2018; Zhang et al., 2018). Astragali Radix (AR), a well-known TCM, is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. has been used as a common clinical medicine in China for thousands of years. The accumulated data showed that AR was beneficial for the treatment of lung cancer in clinical practice (He et al., 2013; Xiao et al., 2019). However, the effective components and potential targets of AR in the treatment of lung cancer have not been reported.

Network pharmacology is a discipline for investigating pathogenesis of disease through constructing and analyzing biological networks (Chen et al., 2019), and provides a powerful tool for screening effective components and potential targets of TCM by establishing a "component-target-disease" network. Modern pharmacological research has proved that the combination of drugs with the lipid bilayer, receptors, and enzymes on the cell membrane is a main mechanism of drug action. Therefore, the effective components can be screened according to the affinity between the components and the cell membrane. Cell membrane immobilized chromatography, as a kind of cell membrane chromatography, uses active cells as the separation vector, TCM extracts as the object, and the separation was carried out according to whether the ingredients in the extract have specific affinity with the cells. In the study, we established an integrated strategy for effective-component discovery of AR in the treatment of lung cancer based on a

variety of techniques, and investigated the relationship between autophagy and the anticancer effect of AR *in vitro* and *in vivo*.

MATERIALS AND METHODS

Materials and Reagents

AR was obtained from Anhui Jingquan Group Herbal Pieces Co., Ltd (Anging city, Anhui Province, China) and was identified by De-kang Wu (professor of Nanjing University of traditional Chinese medicine) as the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.). Benzopyrene was purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). Cisplatin (DDP, 1 mg/ml, 20 ml) was gained from Nanjing pharmaceutical factory Co., Ltd. (Nanjing, China). 4% paraformaldehyde fixative was purchased from Nanjing Nanao Technology Co., Ltd. (Nanjing, China). Hematoxylin dyeing solution (D005) was purchased from Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Eosin dve solution (KGA231), 0.25% trypsin, 1% Triton X-100, goat serum, 4',6-diamidino-2-phenylindole, and DMEM high glucose medium were purchased from Nanjing KeyGen Biotech logical Co., Ltd. (Nanjing, China). Glyceraldehyde-3phosphate dehydrogenase (GAPDH, 0802) antibody was purchased from Shanghai Kangcheng Biological Engineering Co., Ltd. (Shanghai, China). The antibodies against protein 53 (p53, ab131442), phosphorylated B-cell lymphoma-2 (p-Bcl-2, ab138406), mammalian target of rapamycin (mTOR, ab2732), AMP-activated protein kinase (AMPK, ab32047) and Beclin1 were obtained from Abcam (Cambridge, (ab133357) United Kingdom). NP-40 lysis buffer (1210600) was purchased from Nanjing Shengxing Biotechnology Co., Ltd. (Nanjing, China). Polyvinylidene fluoride (k8JN62911) was purchased from Millipore Corporation (Bedford, MA, USA). Pre-stained protein marker was purchased from Fermentas (Burlington, Canada).

Astragaloside I (MUST-16012906) and astragaloside II (MUST-16031010) from were purchased manster biotechnology Co., Ltd. (Chengdu, China). Cycloastragenol (HHQC20170921) was purchased from Nanjing Spring and Autumn Biological Engineering Co., Ltd. (Nanjing, China). Astragaloside IV (1107781-201616), calycosin (111920-201304), calycosin-7-O-β-D-glucoside (111920-201505), formononetin (111703-200603), and ononin (111703-200501) were purchased from the National institute for Food and Drug Control of China (Beijing, China). LC-MS grade methanol and acetonitrile were purchased from Merk Company (Darmstadt, Germany). HPLC grade formic acid with a purity of 99% was

purchased from Anaqua chemical supply (ACS, Houston, USA). Purified water was prepared from a Milli-Q water purification system (Millipore Corporation, Bedford, MA, USA). Other chemicals (reagent grade) used were purchased from Nanjing Chemical Reagent Co, Ltd. (Nanjing, China).

Database Construction

All components of AR were obtained and cross-validated from TCMSP (http://lsp.nwu.edu.cn/tcmsp.php) database (Ru et al., 2014), ETCM (http://www.nrc.ac.cn:9090/ETCM/) (Xu et al., 2019), TCMID (http://www.megabionet.org/tcmid/) (Xue et al., 2012), CNKI (https://www.cnki.net/), PubMed (https://www. ncbi.nlm.nih.gov/pubmed), and SciFinder (https://scifinder.cas. org), and saved in SDF and Canonical SMILES structure format. All targets related to components of AR were collected from several databases, including PharmMapper (http://www.lilabecust.cn/pharmmapper/) (Wang et al., 2017), similarity ensemble approach (SEA, http://sea.bkslab.org/) (Gu and Lai, 2020), and Swiss Institute of Bioinformatics (SIB, http://www. swisstargetprediction.ch/) (Gfeller et al., 2014), and were limited to homo sapiens. All obtained targets were retrieved from GeneCards (http://www.genecards.org/) (Fishilevich et al., 2016) and Therapeutic Target Database (TTD, http://bidd.nus. edu.sg/group/cjttd) (Li et al., 2018) to explore their function to confirm if related to lung cancer, as only targets related to lung cancer can be used in subsequent studies, and named as potential targets. All components related to lung cancer were obtained by matching targets related to lung cancer with components of AR, and named as potential effective components.

Network Construction

The potential target-effective component network was constructed using Cytoscape software (version 3.6.1). In order to further explain the mechanism of AR in the treatment of lung cancer, the protein-protein interaction (PPI) network of lung cancer-related targets was explored by STRING (version 10.5, https://string-db.org/), and was visualized with Cytoscape software (version 3.6.1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of potential targets were performed using the plugin ClueGo (version 2.5.4) from Cytoscape software (version 3.6.1). The signal pathways closely related to lung cancer were statistically analyzed, and those with p < 0.01 after Benjamin's correction were considered to be significantly changed and selected for further research, named as potential signal pathways. Then, the potential signal pathways were evaluated by occurrence frequency of potential targets.

Preparation of Astragali Radix Sample and Component Characterization

AR sample was gained by reflux extraction twice with ten times (w/v) 70% ethanol (v/v) in thermostatic water bath for 1.5 h. The two parts of extracts were combined, and the solvent was removed by rotary evaporation to obtain dried powder of AR. The dried powder of AR was stored in 4 °C refrigerator before use. The AR sample was analyzed by ultra-performance liquid

chromatography–electrospray quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) to characterize chemical component, and main signals in chromatograph were identified, and compared with the reference substances. Eight components, including calycosin-7-O- β -D-glucoside, ononin, calycosin, formononetin, astragaloside IV, astragaloside II, astragaloside I, and cycloastragenol, were accurately identified. The component information and typical total ion chromatogram (AR and reference substances) were shown in **Supplementary Material S1**.

Cigarettes Extract Preparation

A vacuum pump was used to simulate the human lung; a cigarette with the filter (containing 11 mg tar and 1.1 mg nicotine) was ignited and the end of the cigarette attached to a rubber hose. Smoke emitted from the burnt cigarette was dissolved in the serum-free culture medium through a glass pipette tip by a vacuum pump (**Supplementary Figure S1**). The smoke-solubilized serum-free culture medium was filtered by 0.22 μ m sterile microporous membrane to obtain CSE.

Animals and Experiment Design

Forty male A/J mice, weighing 18–20 g, were purchased from Shanghai Experimental Animal Research Center (License number SCKK (HU) 2013-0056, Shanghai, China) and housed under pathogen-free environment with a 12h/12 h light-dark cycle and fed with food and water *ad libitum*. All animal experiments were conducted in accordance with the guidelines of the laboratory animals and approved by the Animal Ethics Committee of Nanjing University of Chinese Medicine.

All the mice were randomly assigned to five groups: control group, model group, DDP group, 5.2 g/kg AR group, and 2.6 g/kg AR group. Except for the control group, the lung cancer model of several groups were created by intraperitoneally injecting with benzopyrene (100 mg/kg body weight dissolved in corn oil) twice a week for 4 weeks; the DDP group were intraperitoneally injected with DDP; mice in the 5.2 g/kg AR group and 2.6 g/kg AR group were orally administrated with AR at the dose of 5.2 g/kg/d and 2.6 g/kg/d (dose conversion according to the Chinese pharmacopoeia 2020 edition part one), respectively, while the control group was given normal saline solution by gavage. After that, all the groups continued to receive different treatments for 28 weeks and once a day. After 28 weeks, all mice were sacrificed, and the lungs were collected. Immediately, a portion of lung tissue was snap-froze in liquid nitrogen and stored at -70 °C for further analysis, and another portion was fixed in 4% paraformaldehyde for histopathological study.

Histopathological Study

The lung tissues were fixed in 4% paraformaldehyde for 24 h, dehydrated and paraffin-embedded. The paraffin-embedded lung tissues were sectioned and stained with hematoxylin-eosin (HE) and immunohistochemistry (IHC). For IHC analysis, the paraffin-embedded lung tissue sections were deparaffinized in xylene and rehydrated through graded alcohol. Then, 3% H₂O₂ was added to block endogenous peroxidase activity. Finally, sections were blocked with normal goat serum for 30 min at

room temperature and then incubated with anti-p-Bcl-2 and antip53 antibodies at 4 $^{\circ}$ C overnight. Sections were counterstained with hematoxylin and observed under light microscopy (Olympus, Tokyo, Japan) using ×400 magnification.

NHBE Cell Culture and Treatments

Primary normal human bronchial epithelial (NHBE) cells were purchased from Beina Chuanglian Biotechnology Co., Ltd. (Beijing, China). NHBE cells were seeded into a plastic culture flask containing DMEM, and then placed in a humidified incubator containing 5% CO2 at 37 °C. Culture medium was changed every two days, until NHBE cells reached 90% confluence. NHBE cells were digested by 0.25% trypsin and 0.02% EDTA solution, and prepared for the experiment with a density of 1×10⁶ cells/mL. An MTT assay was used to assess the viability of NHBE cells exposed to different concentrations of CSE and AR (Supplementary Figure S2). According to the screening results, 10% CSE was chosen as the modeling concentration, and 1000 µg/ml and 500 µg/ml were chosen as the AR administration concentration. NHBE cells were divided into five groups (six wells per group): control groups (no treatment), model group (10% CSE), DDP groups (10% CSE+10 µg/ml DDP), 1000 µg/ml AR group (10% CSE + 1000 µg/ml AR), and 500 µg/ml AR group (10% CSE + 500 µg/ ml AR). All cells were cultured in an incubator at 37 °C with 5% CO₂ for 24 h.

Transmission Electron Microscope Observation

NHBE cells were digested with 0.25% trypsin to prepare singlecell suspension, centrifuged at 1000 rpm for 10 min, washed twice with prechilled PBS, and then fixed with prechilled 2.5% glutaric acid for 90 min at 4 °C. After washing in PBS, the cells were fixed with 1% osmium tetroxide at 4 °C for 30 min. After fixing, the cells were dehydrated with gradient ethanol and acetone, and then embedded in Epon812 resin (Sigma). The embedded blocks were cut into ultrathin sections using an ultramicrotome, and stained with uranyl acetate and lead citrate for ultrastructural examination under transmission electron microscopy (JEOL, Tokyo, Japan).

Western Blot Analysis

The NHBE cells were collected and used for Western blot analysis. The protein was extracted on ice using NP-40 lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris-HCl, pH 8.0). Lysates were centrifuged at 13,000 rpm for 10 min at 4 °C, and the supernatants were collected. Protein concentration was measured by using the DC protein assay (Bio-Rad). The separated protein separated by SDS-polyacrylamide samples were gel electrophoresis and then transferred onto polyvinylidene fluoride membrane (Millipore Corporation, Billerica, MA, USA). Membranes was blocked with 5% nonfat dry milk in Tris-buffered saline with 0.05% Tween-20 (TBST) buffer, and then incubated with primary antibodies against p53 (1:500), p-Bcl-2 (diluted: 1:1000), Beclin 1 (diluted: 1:1000), AMPK (diluted: 1:1000), mTOR (diluted: 1:1000), and GAPDH (1:

10,000) overnight at 4 °C. Subsequently, the membranes were incubated for 2 h at room temperature with secondary antibodies (1:10,000). Finally, the antigen–antibody complexes were visualized using enhanced chemiluminescence (Amersham) according to the manufacturer's instructions, and visualized using Azure c600 imaging system (Azure Biosystems, Dublin, CA, USA). The protein levels were expressed as relative integrated intensity and were normalized to that of GAPDH.

Immunofluorescence Staining

The NHBE cells were washed three times with cold PBS and fixed by 4% paraformaldehyde for 15 min at room temperature, followed by permeabilization process with 1% Triton X-100 (Fisher). NHBE cells were subsequently immuno-stained with primary antibody for 2 h at room temperature and followed by fluorescein isothiocyanate-labeled secondary antibodies for 30 min at room temperature. The samples were washed twice, adhered onto coverslips, and mounted with 4',6-diamidino-2phenylindole–containing mounting medium. Acquisition of images was performed using a fluorescence microscope (Leica Microsystems, Wetzlar, Germany).

Real-Time PCR

Total RNA was extracted using the Trizol reagent (Invitrogen) according to the manufacturer's instructions. The RNA concentrations were determined using a spectrophotometer (ThermoFisher, Waltham, MA, USA). cDNA was synthesized from RNA (2 µg) using First-strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA). Real-time PCR analyses were conducted to quantitate p-53, p-Bcl-2, Beclin1, AMPK, and mTOR relative expression using SYBR Green real-time PCR kit (TaKaRa, Dalian, China) with GAPDH as an internal control. The cycle threshold values from all quantitative real-time PCR experiments were analyzed using $2^{-\Delta\Delta CT}$ method, and were automatically determined by the ABI 7500 Real-Time PCR System (Applied Biosystems, USA). The primers used for realtime PCR analysis were as follow: p-53, forward primer 5'-CAG ACAGGCTTTGCAGAATG-3', reverse primer 5'-GACCCT GGCACCTACAATGA-3'; p-Bcl-2, forward primer 5'-AAG CTGTCACAGAGGGGCTA-3', reverse primer: CAGGCTGGA AGGAGAAGATG-3'; Beclin1, forward primer 5'-GTCCACGCTCGACCTTCTTAC-3', reverse primer 5'-CAC TTGCCAGTCTTAACCTCTG-3'; AMPK, forward primer 5'-TGCGTGTACGAAGGAAGAATCC-3', reverse primer 5'-TGTGACTTCCAGGTCTTGGAGTT-3'; mTOR, forward 5'-CAGTTCGCCAGTGGACTGAAG-3', primer reverse primer 5'-GCTGGTCATAGAAGCGAGAC-3'; and GAPDH, 5'-AGGTCGGTGTGAACGGATTTG-3', forward primer reverse primer 5'-TGTAGACCATGTAGTTGAGGTCA-3'.

Metabolism *in vitro* of Rat Intestinal Flora Preparation of Anerobic Culture Medium

 $CaCl_2$ (0.2 g) and MgSO4.7H₂O (0.2 g) were dissolved on 800 ml of distilled water. After that, K_2HPO_4 ·3H₂O (1.0 g), KH_2PO_4 (1.0 g), $NaHCO_3$ (10.0 g), NaCl (2.0 g), and resazurin solution (10 ml, 2.0 g resazurin dissolved in 10 ml double-distilled water) were added and stirred until dissolving, and then boiled distilled

water was added to 1000 ml, mixed well, and cooled to room temperature. Then, tryptone (10.0 g), yeast extract (10.0 g), L-cysteine (1.0 g), and heme chloride solution (10 ml, 0.05 g heme chloride dissolved in 100 ml of 0.01 N NaOH solution) were supplemented. The pH was adjusted to 7.3 with NaOH test solution. All solution was autoclaved at 121 $^{\circ}$ C for 20 min and stored at 4 $^{\circ}$ C after cooling.

Preparation of Intestinal Flora Culture Solution

Six male Sprague–Dawley (SD) rats were provided by Shanghai Laboratory Animal Center (License No. SYXK (HU) 2013-0056, Shanghai China). Fresh intestinal contents (5.0 g) taken from SD rats were placed in a sterilized penicillin vial and mixed with normal saline at a ratio of 1 g:4 ml to make a suspension, and then the filtrate and anaerobic culture solution were mixed in a ratio of 1:9 to obtain enteric bacteria culture solution.

Sample Preparation

AR (1 mg/ml, 200 μ L) was added to intestinal flora culture medium (1 ml), which was then filled with nitrogen without oxygen. The reactions were terminated by adding 1 ml n-butanol and 1 ml ethyl acetate after incubation for 0, 4, 8, 12, 24, 48, and 72 h, respectively. Next, the mixtures were vortexed for 5 min after adding 10 μ L internal standard solution (nitrendipine, 2 μ g/ml) and centrifuged at 14,000 rpm for 5 min. Subsequently, the organic phases were collected and evaporated under nitrogen gas, and 200 μ L of methanol was added, vortexed, and centrifuged again at 14,000 rpm for 5 min, respectively. The supernatant was passed through the 0.22 μ m millipore filter before injecting into the UPLC-Q-TOF-MS.

Cell Membrane Immobilized Chromatography

A549 cells were purchased from Nanjing Kaiji biology Co., Ltd (Nanjing, China). A549 cells were seeded in a plastic culture flask containing DMEM, and then placed in a humidified incubator containing 5% CO₂ at 37 °C. The medium was replaced every day until A549 cells grew to 80–90% confluence. A549 cells were starved in serum-free medium for 3 h after washing with PBS. AR sample was incubated on intestinal bacteria (2×10^{-4} g/ml) for 0, 4, 8, 12, 24, 48, and 72 h, and then the incubated solution was separately added into the A549 cells for 90 min, and was washed repeatedly with PBS until without detected component. The dissociation solution (10.95 g/L Na₂HPO₄ and 12.91 g/L citric acid aqueous solution) was immediately added into the treated A549 cells, which were incubated at 37 °C and 5% CO₂ for 30 min to inactivate the cell effect target. Finally, the dissociation solution was collected.

A549 cells were digested with pancreatin and suspended into DMEM/high glucose medium. The cell suspension was centrifuged at 3,000 rpm for 2 min at 4 °C; the cell density (1×10^7 cells/mL) was adjusted by PBS and then dissociated at room temperature for 1 h with dissociation solution. The cells were quickly placed at -80 °C for 20 min, and thawed in a thermostatic water bath at 37 °C for 10 min. The

freezing-thawing process was repeated for 4 times and centrifuged at 2000 rpm for 20 min. Then, the dissociation solution and intracellular dissociation solution were collected and evaporated under nitrogen gas, and 200 μ L of methanol was added, vortexed for 2 min, and centrifuged at 11,000 rpm for 10 min. Finally, the supernatant was passed through the 0.22 μ m millipore filter before injecting into the UPLC-Q-TOF-MS.

UPLC-Q-TOF-MS Analysis

Chromatographic analysis was performed on a LC-20AD UPLC system (Shimadzu Corporation, Kyoto, Japan) equipped with hybrid quadrupole time-of-flight tandem mass spectrometry (Triple TOF[™] 5,600, AB SCIEX, Foster City, CA, USA) with electrospray ionization (ESI) source. coupled Chromatographic separation was performed on a ACQUITY UPLC HSS T3 column (50 mm × 2.1 mm, 1.8 µm). The flow rate was 0.3 ml/min, and the mobile phase consisted of solvent A (0.1% formic acid in water, v/v) and solvent B (acetonitrile) with the optimized gradient elution: 0~2 min, 2%~8% B; 2~8 min, 8%~20% B; 8~12 min, 20%~35% B; 12~18 min, 35%~60% B; 18~24 min, 60%~70% B; 24~28 min, 70%~80% B; 28~28 min, 80%~2% B; and 28~30 min, 2%~2% B. The column temperature was set at 30 °C. In order to get better analysis results, the mass spectrometer was conducted in electrospray and multiple reaction monitoring scanning mode, in negative ion modes. The optimized parameters for mass spectrometer were as follows: capillary voltage, 0.5 kV; ion source temperature, 100 °C; cone gas flow rate, 50 L/h; desolvation temperature, 400 °C; and desolvation gas flow, 800 L/h. The informationdependent acquisition techniques and dynamic background subtraction were used to reduce the impact of matrix interference.

Statistical Analysis

All data are presented as the mean \pm standard deviation. Data from mice and NHBE cells were statistically evaluated using *t*-test for pair-wise comparison. p < 0.05 was considered to be a significant difference, p < 0.01 was considered to be extremely significant difference, and p > 0.05 was considered to be no significant difference. All statistical analyses were performed using SPSS software (version 22.0, IBM, Chicago, IL, USA).

RESULTS

Network Pharmacology Analysis of AR in the Treatment of Lung Cancer

Potential Targets and Components Prediction

In this study, the computer virtual screening technology was used to provide a fast and efficient approach to obtain potential targets. At length, 160 potential targets of AR in the treatment of lung cancer were obtained, and the information of potential targets (degree \geq 5) are listed in **Table 1**. As shown in **Figure 1A**, the PPI network consisted of 160 nodes and 3,720 edges (average node degree of 46.5 and average local clustering coefficient of 0.634), and the node represents the potential target; the "degree" value

TABLE 1 | Information of potential targets of AR in the treatment of lung cancer (degree \geq 5).

No.	Gene Name	Protein Name	Uniprot ID	Degree
1	ESR2	Estrogen receptor beta	Q92731	20
2	CDK1	Cyclin-dependent kinase 1	P06493	19
3	CDK2	Cyclin-dependent kinase 2	P24941	18
4	CYP19A1	Aromatase	P11511	18
5	CAT	Catalase	P04040	18
6	ESR1	Estrogen receptor	P03372	18
7	EGFR	Epidermal growth factor receptor	P00533	17
8	AR	Androgen receptor	P10275	16
9	11.2	Interleukin 2	P60568	16
10	ABCB1	ATP-dependent translocase ABCB1	P08183	15
11	HSP90AA1	Heat shock protein HSP 90-alpha	P07900	15
12	PARP1	Poly(ADP-Ribose) polymerase 1	P09874	15
13		DNA tonoisomerase I	P11387	14
14	KDB	Vascular endothelial growth factor recentor 2	P25968	14
15	SBC	Proto-oncogene tyrosine-protein kinase Src	P12031	14
16	ABCG2	ATP-binding cassette sub-family G member 2		1/
17		Mitogon activated protoin kinase 14	016520	14
10		72 kDa tura N collagonasa	Q100009	12
10		Honotoouto growth factor recontor	D02591	10
19		Areabidenate E linewygenade	P000017	12
20	ALUAD MADO	Arachildon ale S-lipoxygeriase	P09917	12
21		Suomerysin-i Matrix matallapratainaga 0	PU0204	11
22		The middlete as other as	P14700	11
23		Inviniuyiale synthase	P04616	11
24	IGFTR	Insulin-like growth factor i receptor	P08069	11
25	IERI	l'elomerase reverse transcriptase	014746	11
20	CYPIBI		Q16678	11
27		Serine/threenine-protein kinase Onk i	014757	10
28	MULT	induced myeloid leukemia cell differentiation protein McI-I	Q07820	10
29	PIK3CG	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform	P48736	10
30	PRKCA	Protein kinase C alpha type	P17252	10
31	PIG52	Prostaglandin G/H synthase 2	P35354	10
32	F2	Prothrombin	P00734	10
33	MMP1	Interstitial collagenase	P03956	9
34	ABL1	Tyrosine-protein kinase ABL1	P00519	9
35	ALK	ALK tyrosine kinase receptor	Q9UM73	9
36	FGF2	Fibroblast growth factor 2	P09038	9
37	STA13	Signal transducer and activator of transcription 3	P40763	9
38	VDR	Vitamin D3 receptor	P11473	9
39	VEGFA	Vascular endothelial growth factor A	P15692	9
40	AK11	RAC-alpha serine/threonine-protein kinase	P31749	9
41	MTOR	Serine/threonine-protein kinase mTOR	P42345	8
42	PIK3CA	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform	P42336	8
43	PLK1	Serine/threonine-protein kinase PLK1	P53350	8
44	HMOX1	Heme oxygenase 1	P09601	8
45	CYP2D6	Cytochrome P450 2D6	P10635	8
46	PPARG	Peroxisome proliferator activated receptor gamma	P37231	8
47	CDK6	Cyclin-dependent kinase 6	Q00534	8
48	ABCC1	Multidrug resistance-associated protein 1	P33527	8
49	AURKA	Aurora kinase A	O14965	7
50	LGALS3	Galectin-3	P17931	7
51	PLG	Plasminogen	P00747	7
52	MPO	Myeloperoxidase	P05164	7
53	PIK3CB	Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform	P42338	6
54	CASP3	Caspase-3	P42574	6
55	PIK3R1	Phosphatidylinositol 3-kinase regulatory subunit alpha	P27986	6
56	SLC2A1	Solute carrier family 2, facilitated glucose transporter member 1	P11166	6
57	BCL2L1	Bcl-2-like protein 1	Q07817	6
58	NTRK1	High affinity nerve growth factor receptor	P04629	6
59	ADRB2	Beta-2 adrenergic receptor	P07550	6
60	TLR9	Toll-like receptor 9	Q9NR96	6
61	TNF	Tumor necrosis factor	P01375	6
62	HDAC1	Histone deacetylase 1	Q13547	5
63	BAD	Bcl2-associated agonist of cell death	Q92934	5
64	MMP7	Matrix metalloproteinase 7	P09237	5
			(Continued on fo	llowing page)

No.	Gene Name	Protein Name	Uniprot ID	Degree
65	TYMP	Thymidine phosphorylase	P19971	5
66	JAK2	Tyrosine-protein kinase JAK2	O60674	5
67	ITGB1	Integrin beta-1	P05556	5
68	CDK4	Cyclin-dependent kinase 4	P11802	5
69	MDM2	E3 ubiquitin-protein ligase Mdm2	Q00987	5
70	TOP2A	DNA topoisomerase 2 alpha	P11388	5
71	PGR	Progesterone receptor	P06401	5
72	BRAF	Serine/threonine-protein kinase B-raf	P15056	5
73	PTK2	Focal adhesion kinase 1	Q05397	5
74	AHR	Aryl hydrocarbon receptor	P35869	5
75	DAPK1	Death-associated protein kinase 1	P53355	5

components, and the brighter color diamond nodes represent the more important potential targets.

that indicated the strength of the potential target showed the larger the node, the brighter the color, and the larger the value. The results showed that the nodes of TP53, AKT1, VEGFA, EGFR, MAPK3, CCND1, HRAS, CASP3, SRC, ALB, JUN, STAT3, HSP90AA1, IL6, MAPK1, ESR1, ERBB2, TNF, MAPK8, MTOR, FGF2, and MMP9 are larger and brighter, indicating that they play a major role in the treatment of lung cancer. Further analysis found that these potential targets are mainly related to autophagy, apoptosis, and immune-mediated, cell cycle arrest and antioxidation. It is speculated that AR may play a role in the treatment of lung cancer through autophagy, apoptosis, and immune-mediated, cell cycle arrest and antioxidation.

Based on the acquisition of potential targets, 36 potential effective components were obtained by matching potential targets, and their information is listed in Table 2. Potential target-effective component network was constructed by Cytoscape 3.6.1 software. As shown in Figure 1B, these 160 potential targets were associated with 36 potential effective components, and the blue nodes and rose red nodes represent 160 potential targets and 36 potential effective components, respectively. Potential target-effective component network indicated that the same component could act on multiple targets, and each target is usually associated with multiple components. These results suggested that different components in AR could regulate these same or similar targets to exert effect. So, in the study of TCM, as a complex system with multiple components and multiple targets, synergistic or antagonistic interactions among the different components of TCM should be considered.

TABLE 1 (*Continued*) Information of potential targets of AR in the treatment of lung cancer (degree \geq 5).

TABLE 2 | The summary of potential effective components of AR in the treatment of lung cancer.

Name	Molecular formula	CAS	Degree	Protein targets from effective components
Jaranol	C ₁₇ H ₁₄ O ₆	3301-49-3	42	ABCB1, ABCC1, ABCG2, ACTC1, AHR, AKT1, ALK, ALOX5, APEX1, AR, CAT, CDK1, CDK2, CDK6, CYP19A1, P1B1, DAPK1, EGFR, ESR1, ESR2, F2, IGF1R, KDR, KIT, MCL1, MET, MMP2, MMP3, MMP9, MYLK, NOS2, ODC1, ARP1, PIK3CG, PIK3R1, PLG, PLK1, PTGS2, PTK2, SRC, TERT TOP2A
Flavaxin	$C_{17}H_{20}N_4O_6$	83-88-5	38	ABCG2, ABL1, ALK, ATM, AURKA, BMPR1A, BRAF, CDK1, CDK2, CDK4, CHEK1, EGFR, EPHB4, F2, HSP90AA1, JAK2, JAK3, JUN, KDR, MAPK1, MAPK14, MAPK8, MMP2, MMP3, MMP9, MTOR, NQO1, NTRK1, PDGFRB, PIK3CA, PIK3CB, PIK3CG, PPARG, PRKCA, PTK2, SRC, TGFBR1, TLR4
Astragaloside IV	$C_{41}H_{68}O_{14}$	84687-43-4	37	ADRB2, AKT1, AKT2, AR, CAT, CDK1, CDK4, CYP2D6, EGFR, ESR1, F2, FGF2, HMOX1, HSP90AA1, IGF1R, IKBKB, IL2, ITGA2B, ITGAV, ITGB1, LGALS3, MDM2, MET, MMP1, MTOR, NBP1 PARP1 PIK3CA PIK3CG PI G PKCA SRC STAT3 TOP1 TYMS VDR VEGEA
Isorhamnetin	$C_{16}H_{12}O_7$	480-19-3	37	ABCB1, ABCC1, ABCG2, AHR, AKT1, ALK, ALOX5, APEX1, CAT, CDK1, CDK2, CDK6, CYP19A1, CYP1B1, DAPK1, EGFR, ESR1, ESR2, F2, HMOX1, IGF1R, KDR, MET, MMP2, MMP3, MMP9, MPO, MYLK, PARP1, PIK3CG, PIK3R1, PLG, PLK1, PTK2, SRC, TERT, TOP2A
Rhamnocitrin	$C_{16}H_{12}O_{6}$	569-92-6	37	ABCB1, ABCC1, ABCG2, ADA, AHR, ALK, ALOX5, APEX1, AR, CAT, CDK1, CDK2, CDK6, CFTR, CYP19A1, CYP1B1, DAPK1, EGFR, ESR1, ESR2, F2, GSTM1, IGF1R, KDR, MCL1, MET, MMP2, MMP3, MMP9, MPO, PIK3CG, PI3R1, PLG, PLK1, PTGS2, SRC, TERT
Kaempferol	$C_{15}H_{10}O_{6}$	520-18-3	35	ABCB1, ABCC1, ABCG2, ADA, AHR, ALK, ALOX5, CAT, CDK1, CDK2, CDK6, CFTR, CYP19A1, CYP1B1, DAPK1, EGFR, ESR1, ESR2, F2, IGF1R, KDR, MET, MMP2, MMP3, MMP9, MPO, PARP1, PIK3R1, PLK1, PTGS2, PTK2, SRC, TERT, TOP1, VEGFA
Quercetin	$C_{15}H_{10}O_7$	117-39-5	35	ABCB1, ABCC1, ABCG2, AHR, AKT1, ALK, ALOX5, APEX1, CALR, CDK1, CDK2, CDK6, CYP19A1, CYP1B1, DAPK1, EGFR, ESR2, F2, IGF1R, KDR, MET, MMP2, MMP3, MMP9, MPO, MYLK, PARP1, PIK3CG, PIK3R1, PLK1, PTK2, SRC, TERT, TOP1, TOP2A
Astrachrysoside A	C ₄₇ H ₇₈ O ₁₈	123914- 38-5	33	AR, CAT, CDK1, CDK2, CTSB, CYP2D6, ELANE, ESR1, FGF2, FGF2, FGFR2, HMOX1, HSP90AA1, IKBKB, IL2, ITGA2B, ITGAV, ITGB1, LGALS3, MAPK14, MET, MMP2, MMP9, MTOR, NTRK1, PIK3CA, PIK3CB, PPARG, SI, C2A1, STAT3, TYMS, VDB, VEGFA
Astrapterocarpan glucoside	$C_{23}H_{26}O_{10}$	94367-42-7	32	ABL1, AR, CASP3, CASP8, CAT, CDK1, CDK2, CHEK1, CYP19A1, EGFR, ERBB2, HMOX1, HSPA5, IL2, LGALS3, MAP2K1, MAPK1, MAPK14, MCL1, MGMT, MMP1, MMP2, MMP3, MMP9, ODC1 PARP1 PDGERB, PTGS2, PTPN11 SL C2A1 TOP1 TYMP
Isomucronulatol	$C_{45}H_{72}O_{16}$	84676-88-0	30	ABL1, ALK, AURKA, BAD, CASP3, CCND1, CDK1, CDK2, CHEK1, CYP19A1, EGFR, EP300, EZR, FLT1, HDAC9, HSP90AA1, KDR, MAPK1, MET, MMP1, MMP7, MTOR, PIK3CB, PIK3CG, PIK3CB, PIK3CB, ABE1, BET, SRC.
Calycosin	$C_{16}H_{12}O_5$	20575-57-9	30	ABCB1, ABCC1, ABCG2, ALK, ALOX5, BAD, BCL2, CDK2, CDK6, CHEK1, CYP19A1, CYP1B1, EGFR, ESR1, ESR2, F2, IGF1R, IGFBP3, IL2, KDR, MCL1, MET, PARP1, PLAU,
Cycloastragenol	$C_{30}H_{50}O_5$	84605-18-5	29	AKT1, AKT2, AKT3, ALOX5, AR, ATR, AURKA, BRAF, CDK2, CHEK1, EGFR, EPHX2, ERBB2, ESR1, ESR2, FGFR1, IGF1R, IKBKB, JAK2, KDR, MAPK14, MAPK3, MAPK8, MDM2, MMP3, MTOR. PGR. PL K1, BOS1
Formononetin	$C_{16}H_{12}O_4$	485-72-3	27	ABCB1, ABCG2, AR, BAD, BCL2, CAT, CHEK1, CYP19A1, CYP1B1, EGFR, ERBB2, ERBB3, ERBB4, ERCC5, ESR1, ESR2, EZR, IDH1, IL2, MCL1, MMP2, MMP9, PPARG, RAF1, SRC, TLR9, TOP1
Lariciresinol	$C_{20}H_{24}O_6$	27003-73-2	27	ABL1, ADA, AKT2, ALOX5, AURKA, BRAF, CDK1, CDK2, CDK4, CFTR, CHEK1, EPHB4, HDAC1, HIF1A, JAK2, MAP2K1, MCL1, MMP7, MTOR, NTRK1, PIK3CA, PIK3CB, PIK3CG, SLC2A1, TL R4, TOP1, XIAP
Ononin	$C_{22}H_{22}O_9$	486-62-4	27	ABL1, ACE, CASP3, CD274, CYP19A1, EGFR, HDAC1, HRAS, IL2, KIT, MAPK14, MGMT, MMP1, MMP2, MMP3, MMP9, MMP9, NRAS, NTRK1, PARP1, PDGFRA, PPARG, PRKCA, SRC, TNF, TOP1. TYMP
Biochanin A	$C_{16}H_{12}O_5$	491-80-5	26	ABCB1, ABCC1, ABCG2, ADRB2, BAD, BCL2, BRAF, CCND1, CHEK1, CHEK2, COMT, CYP19A1, CYP1B1, EGFR, ESR1, ESR2, HSP90AA1, IGFBP3, IL2, MCL1, NTRK1, PLAU, PPARG, RAF1, TERT, TLR9
Alexandrin	$C_{35}H_{60}O_{6}$	474-58-8	25	ABL1, AKT1, ALK, ALOX5, AURKA, BCL2L1, FASN, FGF2, FGFR1, FLT1, HDAC1, HSP90AA1, IGF1R, IL2, JAK2, KIT, MAPK14, MET, PDGFRA, PDGFRB, PTPN11, RET, STAT3, TYMS, VEGFA
Astraisoflavanin	$C_{23}H_{28}O_{10}$	131749- 60-5	25	ABL1, BCL2L1, CASP3, CAT, CD274, CDK1, CDK2, CHEK1, ESR1, ESR2, GSTM1, HMOX1, HRAS, HSP90AA1, IGFBP3, MAPK8, MMP1, MMP7, PARP1, PIK3CA, PTGS2, SLC2A1, TOP2A, TYMP. TYMS
Betulinic acid	$C_{30}H_{48}O_3$	472-15-1	25	ACE, AR, CAT, CYP17A1, CYP19A1, EDNRA, ESR2, IKBKB, ITGB1, MDM2, MMP1, MMP2, MMP3, NOS2, PGR, PPARG, PTGS2, PTPN11, RARA, RARB, TERT, TLR9, TOP1, TOP2A, VDR
Daidzein	$C_{15}H_{10}O_4$	486-66-8	25	ABCB1, ABCC1, ABCG2, AR, BAD, BRAF, CAT, CDK6, CFTR, CYP19A1, CYP1B1, EGFR, ESR1, ESR2, HSP90AA1, IGFBP3, IL2, MCL1, NTRK1, PARP1, PLAU, PPARG, PTGS2, RAF1, TI R9
Soyasaponin I	$C_{48}H_{78}O_{18}$	51330-27-9	25	ADR82, AR, BCL2L1, CASP3, CASP9, CAT, CYP2D6, EDNRA, ESR2, F2, GL11, GR82, HLA-A, HMOX1, IGF1R, IL2, ITGB1, JUN, KDR, MMP9, PARP1, SRC, STAT3, TYMS, VDR
Genistin	$C_{21}H_{20}O_{10}$	529-59-9	24	ABCB1, ABCG2, ALB, CDK2, CYP19A1, EGFR, ESR1, ESR2, HRAS, HSP90A41, IL2, MAPK14, MGMT, MMP1, MMP2, MMP7, NRP1, PRKCA, PTGS2, SLC2A1, SRC, TNF, TOP1, TYMP (Continued on following page)

TABLE 2 | (Continued) The summary of potential effective components of AR in the treatment of lung cancer.

Name	Molecular formula	CAS	Degree	Protein targets from effective components
Astragaloside II	$C_{43}H_{70}O_{15}$	84676-89-1	23	ABCB1, ADRB2, BCL2L1, CDK1, CDK2, CDK4, CTSB, CYP2D6, EGFR, F2, FGF2, HSP90AA1, KDR, LGALS3, MAPK14, MET, PPARG, PRKCA, STAT3, TOP1, TYMS, VDR, VEGFA
Isoflavanone	$C_{15}H_{12}O_2$	4737-27-3	23	ABCG2, ACE, AURKA, CASP3, CAT, CDK1, CDK2, CREBBP, CTSB, CYP19A1, DNMT3A, ELANE, EP300, ESR1, ESR2, HMOX1, MAPK14, MCL1, MPO, PGR, PIK3CA, PIK3CB, TLR9
Astragaloside III	$C_{41}H_{68}O_{14}$	84687-42-3	22	ADRB2, AKT1, AR, CAT, CDK1, CDK2, CDK4, CDK6, CYP2D6, ESR1, ESR2, FGF2, FGFR1, HSP90AA1, IL2, KDR, LGALS3, RARB, STAT3, TYMS, VDR, VEGFA
Astrasieversianin XV	$C_{46}H_{76}O_{17}$	101843- 83-8	20	ADRB2, AKT1, AKT2, CDK1, CYP2D6, FGF2, FGFR1, HDAC1, HLA-A, HSP90AA1, IL2, MAPK14, MTOR, PIK3CA, PIK3CG, SLC2A1, STAT3, TOP1, TYMS, VEGFA
Hederagenin	$C_{30}H_{48}O_4$	465-99-6	20	ALOX5, AR, CYP17A1, CYP19A1, EDNRA, EDNRB, ESR1, ESR2, IL6, ITGB1, MAPK3, MDM2, MMP1, MMP2, MMP3, NOS2, PGR, PTPN11, TERT, TOP1
Syringaresinol	$C_{22}H_{26}O_8$	21453-69-0	19	ABCB1, AURKA, CDK1, CDK2, CHEK1, ERBB2, HDAC1, HDAC9, HIF1A, MCL1, MMP1, MTOR, NOS2, PCNA, PIK3CA, PIK3CB, PIK3CG, SERPINE1, TOP1
Acetylastragaloside I	$C_{47}H_{74}O_{17}$	84687-47-8	17	ABCB1, AR, BCL2L1, CAT, CDK1, CYP2D6, ESR2, FGF2, HMOX1, HSP90AA1, LGALS3, PARP1, PRKCA, STAT3, TYMS, VDR, VEGFA
Lupeol	C ₃₀ H ₅₀ O	545-47-1	16	ABL1, AR, BIRC5, CYP17A1, CYP19A1, ESR1, ESR2, IGF1R, JAK2, KDR, MAPK14, MDM2, MPO, PRKCA, SHH, VDR
Calycosin-7-O-β-D- glucoside	$C_{22}H_{22}O_{10}$	20633-67-4	14	ABCB1, ABL1, HRAS, HSP90AA1, IL2, MAPK14, MET, MGMT, PRKCA, SRC, TNF, TOP1, TYMP, TYMS
Rutin	C ₂₇ H ₃₀ O ₁₆	153-18-4	14	ABCG2, ACTC1, ALOX5, AR, CAT, CYP1B1, ESR2, IL2, PARP1, PLG, PTGS2, TERT, TNF, TP53
Astragaloside I	C ₄₃ H ₆₈ O ₁₆	84680-75-1	12	ABCB1, AR, BCL2L1, CAT, CDK1, CYP2D6, ESR2, FGF2, HMOX1, HSP90AA1, LGALS3, PARP1, PRKCA, STAT3, TYMS, VDR, VEGFA
Hirsutrin	C21H20O12	482-35-9	12	ABCG2, ALOX5, CAT, CYP1B1, ESR1, IL2, PARP1, PLG, PTGS2, SRC, TERT, TNF
Lupenone	C ₃₀ H ₄₈ O	1617-70-5	12	AKT1, AR, CAT, CYP17A1, CYP19A1, EPHB4, HPGD, KDRMAPK14, MPO, PDGFRB, PGR
Coumarin	$C_9H_6O_2$	91-64-5	2	PARP1, TYMS

FIGURE 2 Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of AR in the treatment of lung cancer. (A) Go enrichment analysis of potential targets in biological process. (B) Go enrichment analysis of potential targets in molecular function. (C) Go enrichment analysis of potential targets in cell composition. (D) The network of potential target-signal pathway by KEGG analysis ($p \le 0.01$). The diamond nodes represent potential targets, oval nodes represent signal pathways, and the brighter color oval nodes represent the more important the signal pathways.

TABLE 3 | Potential target-pathway enrichment of AR in the treatment of lung cancer.

pathwayTerm%pathwayTerm%Pathway10.0468Progeteron-mediated corpt maturation20.20Petersky agrinin pathway32.3844Findenetis concer34.4420Human pathonasis infection12.1240Baudar concer app onthing12.42101Human pathonasis infection13.0430Profile signifing pathway12.42101Human pathonasis infection13.0430Profile signifing pathway13.07101Human pathonasis10.8430Profile signifing pathway13.07101Human pathonasis10.8430Profile signifing pathway13.07101Human pathonasis10.8430Profile signifing pathway13.07101Human pathonasis11.8430Profile signifing pathway28.47101Human pathonasis11.6530Cal cocke13.71171Hal signifing pathway22.1330Toff agrining pathway28.47101Human pathonasis11.6630Calacocke afferentation15.6311.71Hunan pathway22.1330Toff agrining pathway28.47101Human pathway11.0630Calacocke afferentation15.6411.64Hul signifing pathway22.1330Toff11.6411.64Hunan pathway11.06302020.0630.4111.64Hul signifing pathway12.163011.6411.6411.	Potential targets-signal	Genes/	Nr. Genes	Potential target-signal	Genes/	Nr. Genes
Pathway in curcor 16.04 85 Progedences mediated occylar maturation 20.01 23 PBK-Ast spraining pathway 15.25 94 Transcriptional meterglation in cancer 10.75 23 Hyrana nacial motion feedban 12.25 40 Biodia concor 44.47 23 Hyrana nacial motion feedban 12.25 40 Biodia concor 43.47 19 Hyrana nacial motion 16.44 37 To all ecoptor signating pathway 18.47 19 Human To all backers wise 1 indiction 16.80 37 To all ecoptor signating pathway 18.37 19 Prostet concor 38.14 37 pc5 signating pathway 28.50 18 Kaposi aconcor 38.14 37 pc5 signating pathway 28.57 18 Kaposi aconcor 38.14 37 pc5 signating pathway 17.31 18 Robis aconcor 38.14 37 pc5 signating pathway 13.64 18 Kaposi aconcor 13.25 37 pc4 signating pathway 13.64 18 <th>pathway</th> <th>Term%</th> <th></th> <th>pathway</th> <th>Term%</th> <th></th>	pathway	Term%		pathway	Term%	
PIEK-Add signaling pathway 15.25 64 "Trainciptorum interceptation in cancer 10.75 20 Humen patientwists infection 12.12 40 Backder cancer 46.28 20 Humen patientwists infection 13.04 30 mtCPR signaling pathway 12.42 40 Humen potengalowsis infection 16.44 37 To all resports inplanting pathway 13.87 19 Humen potengalowsis infection 16.84 37 train signaling pathway 25.00 18 MAPK Signaling pathway 12.20 38 Acro guidance and signaling pathway 25.00 18 MAPK Signaling pathway 12.20 38 Acro guidance and signaling pathway 25.00 18 MAPK Signaling pathway 12.20 38 For seption Flagmaling pathway 20.17 18 Focal analizing pathway 10.160 11.52 30 Call sport 18.02 17.01 16 Focal analizing pathway 2.00 30 Apoliciosa 10.75 10.16 10.16 10.16 10.16 10.16 <td>Pathways in cancer</td> <td>16.04</td> <td>85</td> <td>Progesterone-mediated oocvte maturation</td> <td>20.20</td> <td>20</td>	Pathways in cancer	16.04	85	Progesterone-mediated oocvte maturation	20.20	20
Protestypering in a random 23.88 47 Endometric lancer 84.48 20 Humang politowasis Infection 12.12 40 Bladde conor 84.78 20 Headetile B 23.83 38 Sphinopipol dynain justices 15.47 19 ModelNNa in cancer 13.44 39 Toll exceptor signaling pathway 13.51 19 Human T-cell tabusits intection 16.84 37 Toll exceptor signaling pathway 13.51 19 Protatle cancer 88.14 37 pB3 signaling pathway 25.00 18 MARK signaling pathway 12.25 38 Acce guidance 19.44 18 Focal adhetics 13.26 Toll America 13.26 17 17 Rot signaling pathway 14.25 30 Calculate 13.28 17 Rot signaling pathway 14.26 30 Calculate 13.28 17 Rot signaling pathway 11.65 30 Calculate 13.44 18 Rot signaling pathway 11.65	PI3K-Akt signaling pathway	15.25	54	Transcriptional misregulation in cancer	10.75	20
Human papelamanbala infection 12.12 40 Blacker career 42.78 20 Human Contragelyon's infection 13.04 30 Ringhold signaling pathway 12.42 19 Human Contragelyon's infection 16.44 37 Total incapor's signaling pathway 13.87 19 Human Contragelyon's infection 16.44 37 traulin signaling pathway 13.87 19 MAPK signaling pathway 12.00 38 Avon guidance 9.44 18 Kopos isocom-sociascidad interposition intection 13.35 101116: receptor signaling pathway 26.47 18 Foola alteriasci 17.59 35 Fo epation FI signaling pathway 26.47 18 Foola signaling pathway 114.22 30 Total interposition 13.71 17 Foola signaling pathway 114.56 30 Obsciencid internation 15.89 17 Foola signaling pathway 22.13 30 Total interposition 15.89 17 Foola signaling pathway 22.15 30 Apoth signaling pathway <	Proteoglycans in cancer	23.38	47	Endometrial cancer	34 48	20
Hepatis B 23.83 39 Springspipt signaling pathway 15.97 19 Human Crank Review Visus 1 Infection 16.44 37 Total receptor signaling pathway 18.87 19 Prostate cancer 88.14 37 Total receptor signaling pathway 18.87 19 Prostate cancer 88.14 37 Total receptor signaling pathway 25.00 18 Kapots isonoma-seociated Interpretives Intection 19.36 86 Tot-Hier receptor signaling pathway 17.81 18 Kapots isonoma-seociated Interpretives Intection 19.36 86 Tot-Hier receptor signaling pathway 17.81 18 Rais signaling pathway 14.22 33 Measias 13.64 18 Rais signaling pathway 14.86 30 Octoclast differentiation 13.88 17 Apotosis 22.06 30 Apotinis Intertion 1.68 16 Coldure renesconce 19.73 29 Platest activation 1.63 15 Marcia Mathematican Annoma Signaling pathway 1.63 15 14	Human papillomavirus infection	12 12	40	Bladder cancer	48 78	20
MicroRNAs in cancer 13.04 39 mTCR1 signaling pathway 12.42 19 Human Contengenova in Intection 16.44 37 Totall expector signaling pathway 13.87 199 Human Contengenova in Intection 16.84 37 realin acynaling pathway 13.87 199 MAEK signaling pathway 12.00 36 Axon guidance 9.84 186 Kapes diagroma-mascinate Interpretions infection 15.37 36 Totall exceptor signaling pathway 26.47 186 Focal adressin Bas signaling pathway 26.47 186 187 13.71 17 Focal adressin adress	Hepatitis B	23.93	39	Sphingolipid signaling pathway	15.97	19
Human Caracterize significant setters 16.81 37 Toall receptor significant pathway 16.81 19 Prostate caracter 38.41 37 D5 significa pathway 25.00 18 MCR significa pathway 12.20 36 Aron guidenci 9.44 18 Kapozi sancaru-suscicated hepsewins infection 19.36 36 Toallies receptor significa pathway 17.41 18 Rais significa pathway 14.22 35 For option Hispathing pathway 17.41 18 Rais significa pathway 14.66 30 Ostocksic differentation 13.88 17 Apotosis 22.06 30 Applin significa pathway 18.86 16 Fock significa pathway 18.66 30 Ostocksic differentation 13.86 16 Fock significa pathway 18.67 30 Multime ostimution 16.86 16 Reside cancer 19.46 29 Molecine continuon 6.65 16 Reside cancer 19.48 20.70 27 Botal continuon 16.13	MicroBNAs in cancer	13.04	39	mTOR signaling pathway	12 42	19
Human T-adl lakemia singa 1 refection 15.87 19 Potatia concor 81.44 205.30 gaining pathway 20.00 18 MAPK signing pathway 12.20 36 Aron guidance 9.94 18 Kopic ispront-sessociated herpesitus infection 17.53 35 Fe apaixe file inceptor isginaling pathway 26.07 18 Fool ad insoin 15.77 33 Cell cycle 13.71 17.1 Fool agains pathway 12.23 30 Analesia 13.84 18 Fool againing pathway 12.73 30 Cell cycle 13.71 17.26 Fool Sapaining pathway 22.06 30 Aropin signing pathway 16.86 16 Calular senseconce 18.73 30 Horpes semplex vius 1 infection 8.65 16 Calular senseconce 19.43 20 Nobural killer coluton 16.13 15 Fool againing pathway 18.48 15 16 16 16 16 16 16 16 16 16 16	Human cytomegalovirus infection	16.44	37	T cell receptor signaling pathway	18.81	19
Prostein curver Bit All State of the presentation	Human T-cell leukemia virus 1 infection	16.89	37	Insulin signaling pathway	13.87	19
MAPK oppulsing pathway 12.0 38 Aven guidance 59.4 18 Kapcel acrosma-associated herpesvirus infection 19.35 38 Total like neeptor lignaling pathway 17.31 19 Res agraining pathway 14.22 38 Fe epation R1 agraining pathway 12.81 17 Res agraining pathway 14.68 30 Ostocodast differentiation 13.21 17 Rap 1 signaling pathway 14.68 30 Ostocodast differentiation 15.89 16.64 18 Cold signaling pathway 14.68 30 Ostocodast differentiation 15.89 17 Apoptiosis 2.2.06 30 Apoint signaling pathway 11.68 16 Reside cancer 19.73 29 Pletet extivation 18.61 15 Reside cancer 19.46 29 NUD-like monoptor signaling pathway 16.13 15 Viai Lacronnogenesia 19.43 27.70 27 27 Ginker cancer 15.39 14 Viai Lacronnogenesia 19.43 27 Chyciner	Prostate cancer	38.14	37	n53 signaling pathway	25.00	18
Kappes issues/second-second 19.35 38 Tol-like research signaling pathway 17.31 18 Resis agning pathway 14.22 33 Meaking 16.64 18 Human Immundedificancy virus 1 Infaction 15.67 33 Call copia 13.71 17 Resis graining pathway 22.33 Odeocclast differentiation 13.28 17 Food agning pathway 22.33 Thi 7 cell differentiation 13.28 17 Food agning pathway 22.33 Applie synaling pathway 12.61 15 Food agning pathway 22.33 Applie synaling pathway 12.61 16 Calue activation 17.56 30 Mappa sing pathway 12.61 16 Calue activation 13.33 28 Li 17 agning pathway 13.16 15 Finance activation agnining pathway 27.00 27.00 27.00 16.33 16 Finance activation agnining pathway 13.43 27.00 Chulingrup agnining pathway 13.15 16 Finad affinang pathway 13.43	MAPK signaling nathway	12.20	36	Axon quidance	9.94	18
Focal adhesion 17.59 35 For gestion P1 signaling pathway 126.47 18 Real signaling pathway 14.25 30 Maxabia 13.71 17 Real signaling pathway 14.55 30 Obtoolsat differentiation 13.28 17 Focol signaling pathway 22.73 30 Thi 7 old differentiation 15.89 17 Apoptiosia 22.06 30 Apolin signaling pathway 12.11 18 Apoptiosia 22.06 30 Apolin signaling pathway 12.10 15 Mata Caronoma 17.86 30 Herps signaling pathway 12.10 15 Gastric cancer 19.73 29 Patelit activation 12.10 15 Mata Caronogenesis 13.93 28 EL-17 signaling pathway 15.14 15 HF-1 signaling pathway 27.00 27 B cell receptor signaling pathway 15.05 14 Episten-Barr visus intection 13.43 27 Colchocin signaling pathway 15.05 14 Contral carbor	Kaposi sarcoma-associated hernesvirus infection	19.35	36	Toll-like recentor signaling pathway	17.31	18
Pase signaling pathway 14.22 33 Meassies 12.64 18 Human mununodeficiency virus 1 infection 15.57 33 Cell cycle 13.71 17 Rap 1 signaling pathway 22.05 30 Thi 7 cell differentiation 15.89 17 FoxO signaling pathway 22.06 30 Applicits 16 16 Calluar signaling pathway 17.86 30 Natural killer coll indicated cytotoxicity 12.11 16 Galluar signaling pathway 17.86 30 Natural killer coll indicated cytotoxicity 12.13 15 Breast cancer 19.73 29 Platetia attrivation 12.10 15 Gastric cancer 19.46 29 NOL-killer coeptor signaling pathway 16.15 15 Hir-1 signaling pathway 27.00 27.02 27 Colinergic synapse 13.39 15 Hopatits C 17.42 27 Grift signaling pathway 16.16 13 Non-medicel Ling cancer 40.91 27 contrin resistrance 12.9 <td< td=""><td>Focal adhesion</td><td>17.59</td><td>35</td><td>Ec ensilon BL signaling pathway</td><td>26.47</td><td>18</td></td<>	Focal adhesion	17.59	35	Ec ensilon BL signaling pathway	26.47	18
Internal intrumotion protocols 10.04 10.05 10.05 Rap1 signing pathway 14.56 30 Ostocolast differentiation 15.26 17 Fockol signing pathway 22.73 30 Thi 7 cell differentiation 15.26 17 Apoptosis 22.06 30 Apelin signifing pathway 11.68 17 Apoptosis 22.07 30 Thi 7 cell differentiation 15.21 16 Beast cancer 19.75 30 Nature Ikier cell indicated cytotocicity 12.21 16 Gastric cancer 19.74 22 Patiete activation 8.65 16 Wall carcinogenesis 19.34 22 Patiete activation 13.15 15 Valid carcinogenesis 19.34 27 Colleregic syngace 13.30 15 Valid carcinogenesis 19.34 27 Colleregic syngace 13.65 14 Epstein-Barr vius intection 13.43 27 Coloris signifing pathway 16.05 14 Epstein-Bar vius intection 3.23 2	Bas signaling pathway	14.22	33	Measles	13.64	18
And a space Constraints Constraints <thconstraints< th=""> <thconstraints< th=""></thconstraints<></thconstraints<>	Human immunodeficiency virus 1 infection	15.57	33	Cell cycle	13 71	17
The of signaling pathway 22.72 30 Th 17 aid differentiation 15.99 17 Appolosis 22.06 30 Apelin signaling pathway 11.86 16 Calluar servescence 18.75 30 Natural killer cell mediated cytotoxicity 12.21 15 Hepatocollular carcinoma 17.86 30 Hepas simplex virus 1 indection 8.65 16 Breast cancer 19.73 29 Pateriet activation 12.10 15 Gastric cancer 19.46 29 NOD-like receptor signaling pathway 8.43 15 Vial acrinogenesis 13.98 28 12.77 B cell receptor signaling pathway 15.05 14 Provid hormone signaling pathway 20.82 27 Collinergic synapse 13.99 15 14 Non-small cell king cancor 15.43 27 cotyncin signaling pathway 15.05 14 Relates atyncin in cancer 41.54 27 codiff=PAGG signaling pathway 16.03 13 Edistric ator 19.24 24 codiff=PAGG	Ban1 signaling nathway	14.56	30	Osteoclast differentiation	13.28	17
Loo signing pathway 2.1 2.6 Amore and index fraction 1.5.5 1 Callular sensescence 18.75 30 Natural Killer cell mediated cytotoxitity 1.2.16 16 Callular sensescence 18.75 30 Natural Killer cell mediated cytotoxitity 1.2.10 16 Breast cancer 19.73 29 Platetat activation 12.10 15 Gastric cancer 19.73 29 Platetat activation 16.13 15 IFI-1 signing pathway 16.13 15 16.13 15 Through pathway 22.08 27 Choliserogic signing pathway 15.05 14 Epstein-Barrytoxius infaction 13.43 27 Oxytocin signing pathway 15.05 14 Non-small cell turg cancer 40.91 27 GoMP-HKi signing pathway 14.61 13 Relaxin signing pathway 30.59 26 Longewity regulating pathway 14.61 13 Gohred Caroon metabolism in cancer 30.25 26 AMP-Ki signing pathway 10.00 12 <tr< td=""><td>Fap r signaling pathway</td><td>22.73</td><td>30</td><td>Th17 cell differentiation</td><td>15.80</td><td>17</td></tr<>	Fap r signaling pathway	22.73	30	Th17 cell differentiation	15.80	17
Control 2.505 Natural litere of imediated cytotoxicity 12.21 18 Hapatocalliar carcinoma 17.26 30 Hatepas amplias vincs interction 8.65 18 Breast cancer 19.73 29 Patatele activation 8.65 18 Vial carcinogenesis 13.33 28 IL-17 signaling pathway 8.43 15 Vial carcinogenesis 13.39 28 IL-17 signaling pathway 16.13 15 Hip-1 signaling pathway 27.00 27 B cell receptor signaling pathway 15.05 14 Thyroid hormone signaling pathway 22.62 Cholinergic synapse 13.39 15 Hepatitis C 17.42 27 GrAH* signaling pathway 10.55 14 Non-small cell lung cancer 40.91 27 Insulin resistance 12.66 14 Reaxin asgnaling pathway 30.59 26 Longevity regulating pathway 18.71 33 ErbB signaling pathway 10.00 12 Patrices actional synapse 14.61 13 Calorocetal		22.06	30		11.68	16
Outskin autocontrol 10.10 <td></td> <td>18 75</td> <td>30</td> <td>Natural killer cell mediated cytotoxicity</td> <td>12.21</td> <td>16</td>		18 75	30	Natural killer cell mediated cytotoxicity	12.21	16
Inspace of the part	Henatocallular caroinoma	17.96	30	Harpes simpley virus 1 infection	9.65	16
Drash (a) dot 19.73 23 Pratect duration 12.10 13 Viral carcinogenesis 13.93 28 IL-17 signaling pathway 16.13 15 IHF-1 signaling pathway 27.00 27 B cell receptor signaling pathway 13.39 15 Hepatitis Cohinergic synapse 13.39 15 Hepatitis Conservation 13.43 27 Oxytocin signaling pathway 9.15 14 Non-small cell lung cancer 40.91 27 Insulin resistance 12.96 14 Catrial carbon metabolism in cancer 41.64 27 Oxytocin signaling pathway 7.83 13 Gentral carbon metabolism in cancer 41.64 27 Colmery regulating pathway 7.83 13 Golared cancer 40.67 26 Longevity regulating pathway 8.72 13 AGE-RAGE signaling pathway 10.00 12 Pancretic cancer 34.67 26 Longevity regulating pathway 10.35 12 Melanoma 36.11 26 Sertonergic synapse	Broast cancer	10.72	20	Platelet activation	12.10	10
Calabita 13-03 23 Tho Chine facephone applications pathway 0.4-0 10 Virial carcinogenesis 13.03 28 Tho Chine facephone applications pathway 21.13 15 Thycid hormone signaling pathway 22.82 27 Chollenergic synapse 13.39 15 Hepatits C Chollenergic synapse 15.05 14 Epstein-Barr virus infaction 13.43 27 Control signaling pathway 9.15 14 Non-scholl lung cancer 40.91 27 Insulin resistance 12.96 14 Certral carbon metabolism in cancer 41.54 27 CGMP-PKG signaling pathway 14.61 13 GAE-FACE Signaling pathway 0.69 26 Longevity regulating pathway 14.77 13 AGE-FACE Signaling pathway 10.00 12 Pancretito cancer 30.59 26 Non-accholic tarty liver disease (NAFLD) 8.72 13 Colorectal cancer 30.23 26 ANn-accholic tarty liver disease (NAFLD) 10.00 12 Pancretito canoler 34.21<		19.75	29	NOD like receptor signaling pathway	9.42	15
Viai a calculage reads 10.50 20 12.17 signifing pathway 10.10 10 Hir-T signifing pathway 27.00 27 B cell recognor signifing pathway 10.10 15 Thyroid hormone signaling pathway 23.28 27 Cholinergic synapse 13.39 15 Hepatitis Gamma Signaling pathway 15.05 14 Non-small cell kung cancer 40.91 27 Insulin regulations pathway 9.15 14 Non-small cell kung cancer 41.54 27 CGMP-PKG signaling pathway 7.83 13 Erbls signaling pathway 0.00 26 Rop-alcoholic fatty liver disease (NAFLD) 8.72 13 AGE-RAGE signaling pathway 10.300 26 Longevity regulating pathway 10.00 12 Pancreatic cancer 34.67 26 Longevity regulating pathway 10.43 12 Melanoma 36.11 26 Serotonergic synapse 10.43 12 Melanoma 33.33 25 Longevity regulating pathway 15.28 11 N	Viral careinogonosis	13.40	29	I 17 signaling pathway	16 12	15
In Traginaling pathway 21.8 27 Cholmeception ging pathway 21.10 15 Hepatits C 17.42 27 Cholmeception ging pathway 15.05 14 Epstein-Barr virus infection 13.33 15 14 15 Mon-small cell lung cancer 40.91 27 CoNon-Bignaling pathway 9.15 14 Central carbon metabolism in cancer 41.54 27 CoMP-PKG signaling pathway 7.83 13 General carbon metabolism in cancer 41.54 27 CoMP-PKG signaling pathway 7.83 13 Golorectal cancer 30.59 26 Longevity regulating pathway 14.77 13 Colorectal cancer 30.67 26 Non-alcoholic fatty liver disease (NAFLD) 8.72 13 Colorectal cancer 34.67 26 Longevity regulating pathway 10.00 12 Pancreatic cancer 34.67 26 Adrenergic signaling pathway 10.43 12 Chronic myeloid leukernia 34.21 26 Adrenergic signaling pathway 15.28 11	HIE-1 signaling pathway	27.00	20	B cell recentor signaling pathway	21.13	15
Influction E1.2 21 Chaine give singular 15.3 1 Impact in Control is agriang pathway 15.05 14 Epstein-Barr virus infection 13.43 27 Oxytocin signaling pathway 9.15 14 Non-smail cell lung cancer 40.91 27 Insulin resistance 12.96 14 Central carbon metabolism in cancer 41.54 27 CoMP-PKG signaling pathway 7.83 13 ErbB signaling pathway 0.00 26 Gap Junction 14.77 13 AGE-RAGE signaling pathway in diabetic complications 20.00 26 Mon-alcoholic fatty liver disease (NAFLD) 8.72 13 Colorectal cancer 30.67 26 AMPK signaling pathway 10.00 12 Pancreatic cancer 34.67 26 Adrencergic signaling in cardiomyocytes 7.59 11 Relanding pathway 15.43 25 Fc garma R-mediated phagocytosis 12.09 11 Signaling pathway 10.43 22 Cononic myeloid leukemia 3.33 25 Leukocyte transendothehi	Thuroid bormono signaling pathway	27.00	27	Chalinaraia avransa	12 20	15
Instruction 11.42 21 Clinit agritang pathway 10.30 14 Non-small cell lung cancer 40.91 27 Insulin resistance 12.96 14 Non-small cell lung cancer 40.91 27 Insulin resistance 12.96 14 Cortral carbon metabolism in cancer 41.54 27 CMP-PKG signaling pathway 7.83 13 ErbB signaling pathway 30.59 26 Longevity regulating pathway 14.61 13 Relaxin signaling pathway 20.00 26 Rap junction 14.77 13 AdSE-RAGE signaling pathway 10.00 12 Pancreatic cancer 30.23 26 AMPK signaling pathway 10.00 12 Pancreatic cancer 36.11 26 Serotonergic synapse 10.43 12 Chronic myeloid leukernia 34.21 26 Adreners junction 15.28 11 JAK-STAT signaling pathway 15.43 25 Fo gamma R-modiated phagocytosis 12.09 11 Gloma 33.33 25 Leukocyte trans	Hopatitis C	17.40	27	GRDH signaling pathway	15.05	14
Lpstambolar into a interaction 13.43 27 Doyloch signaling patiway 3.13 14 Non-smail cell lung cancer 41.54 27 routin resistance 12.96 14 Central carbon metabolism in cancer 41.54 27 routin resistance 12.96 14 Central carbon metabolism in cancer 41.54 27 routin resistance 7.83 13 Relaxin signaling pathway 0.059 26 Longevity regulating pathway 14.77 13 AGE-RAGE signaling pathway 0.00 26 Sap junction 14.77 13 AGE-RAGE signaling pathway 10.00 12 Concerct cancer 34.67 26 Longevity regulating pathway 19.35 12 Melanoma 36.11 26 Adherens junction 15.28 11 Fluid shear stress and atherosclerosis 18.71 26 Adherens junction 15.28 11 Gloma 33.33 25 Leukocyte transendothellal migration 9.82 11 Begulation of actin cytoskiedon 11.21 2	Epitoin Barr virus infection	12.42	27	Oxytopin signaling pathway	0.15	14
Number 10.9 10.9 10.9 10.9 14.9 Central carbon metabolism in cancer 41.54 27 coRMP-PKG signaling pathway 14.61 13 Belaxin signaling pathway 30.59 26 Longevity regulating pathway 14.61 13 Relaxin signaling pathway 30.59 26 Longevity regulating pathway 14.61 13 Relaxin signaling pathway 30.59 26 Non-alcoholic fafty liver disease (NAFLD) 8.72 13 AGE-RAGE signaling pathway 10.00 12 Pancreatic cancer 30.23 26 AMPK signaling pathway 10.00 12 Pancreatic cancer 34.67 26 Longevity regulating pathway 19.35 12 Melanoma 36.11 26 Sectohergic synapse 10.43 12 Chronic myeloid leukemia 34.21 26 Adrenergic signaling nathway 15.84 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Glioma 33.33 25	Non small coll lung concor	10.40	27	Inculin registance	12.06	14
Contract action 1.5 2.1 2.0 Columer Ant Sagnaling pathway 7.05 13 FibB signaling pathway 30.59 2.6 Columer Ant Sagnaling pathway 14.61 13 Relaxin signaling pathway 20.00 2.6 Gap junction 14.77 13 AGE:RAGE signaling pathway idabetic complications 20.00 2.6 Non-alcoholic fatty liver disease (NAFLD) 8.72 13 Colorectal cancer 30.61 2.6 Longewity regulating pathway 19.35 12 Melanoma 36.11 2.6 Adrenergic signaling pathway 19.35 12 Melanoma 36.11 2.6 Adrenergic signaling pathway 19.35 12 Melanoma 33.33 25 Forgamma R-mediated phagocytosis 12.09 11 Gloma 33.33 25 Leukcoyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 10.51 20.17 24 Melanogenesis 10.89 11 Egulation of actin cytoskieton 11.21 24	Control carbon metabolism in cancor	40.91	27	a GMP PKG signaling pathway	7.90	14
LDD signaling pathway 20.09 260 Exclusing pathway 14.01 15 Relaxin signaling pathway 20.00 26 Gap junction 14.77 13 AGE-RAGE signaling pathway in diabetic complications 26.00 26 Mon-alcoholic fatty liver disease (NAFLD) 8.72 13 Colorectal cancer 30.23 26 AMPK signaling pathway 19.35 12 Melanoma 36.11 26 Serotonergic synapse 10.43 12 Chronic myeloid leukemia 34.21 26 Adreners junction 15.28 11 JAK-STAT signaling pathway 15.43 25 Fc garma R-mediated phagocytosis 12.09 11 Gloma 33.33 25 Leukocyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Estrogen signaling pathway 20.17 24 Melanogenesis 10.89 11 Estrogen signaling pathway 17.39 24 Pertussis 20.31 11	Eth R signaling pathway	20.50	21	Longovity regulating pathway	14.61	13
Interacting pathway 12.00 20 Gap Junition 14.7 15 Colorectal cancer 30.23 26 AMFK signaling pathway 10.00 12 Pancreatic cancer 34.67 26 Longevity regulating pathway 19.35 12 Melanoma 36.11 26 Serotonergic synapse 10.43 12 Chronic myeloid leukemia 34.21 26 Adrenergic signaling nathway 15.28 11 Fluid shear stress and atherosclerosis 18.71 26 Adrenergic signaling nathway 15.28 11 Gloma 33.33 25 Leukocyte transendothelial migration 9.82 11 Regulaticin of actin cytoskiedton 11.21 24 Adipocytokine signaling pathway 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 Cytope lectrin receptor signaling pathway 10.53 10 10 10 10 <	Polovin signaling pathway	30.59	20	Conjunction	14.01	13
Nucle relations 2000 201 Non-relation (arti) med losses (with 20) 5.12 1.5 Pancreatic cancer 30.23 26 AMPK signaling pathway 19.35 12 Melanoma 36.11 26 Concentic tany med losses (with 20) 1.3 12 Chronic myeloid leukemia 34.21 26 Adrenergic signaling in cardiomyocytes 7.59 11 Fluid shear stress and atherosclerosis 18.71 26 Adrenergic signaling in cardiomyocytes 7.59 11 Gloma 33.33 25 Leukocyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 15.94 11 Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 10.53 10 Chagas disease (American trypanosomiasis) 22.32 23 Lany-temp tentation 14.47 11 Toxoplasmosis 20.35 23 <td< td=""><td>AGE BAGE signaling pathway in diabatic complications</td><td>20.00</td><td>20</td><td>Non alcoholic fatty liver disease (NAELD)</td><td>9.70</td><td>13</td></td<>	AGE BAGE signaling pathway in diabatic complications	20.00	20	Non alcoholic fatty liver disease (NAELD)	9.70	13
Conductar Carlor Su2.3 20 Autre Signaling patiway 10.00 12 Melanoma 36.11 26 Longevity regulating patiway 19.35 12 Melanoma 36.11 26 Serotonergic synapse 10.43 12 Chronic myeloid leukemia 34.21 26 Adherens junction 15.28 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Glioma 33.33 25 Leukocyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 15.94 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 Chype lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.53 10 Chagas disease (American trypanosomiasis) 22.33 23 Leishmaniasis 10.43 10 <td>Coloraetal concor</td> <td>20.00</td> <td>20</td> <td>MARK signaling pathway</td> <td>10.00</td> <td>10</td>	Coloraetal concor	20.00	20	MARK signaling pathway	10.00	10
Partnetatic Carlear 34.07 20 Europension regulating partivacy 19.53 12 Melanoma 36.11 26 Serotonergic synapse 10.43 12 Chronic myeloid leukemia 34.21 26 Adreners junction 15.28 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Glioma 33.33 25 Leukocyte transendotthelial migration 9.82 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Starto reciptor signaling pathway 17.39 24 Pertussis 14.47 11 Starto reciptor signaling pathway 22.33 23 Long-term potentiation 14.47 11 Starto reciptor signaling pathway 22.33 22.33 23 Long-term potentiation 4.93 10 Chrope lectin receptor signaling pathway 12.55 23 Leibhamaiasis 13.01 <td>Deperentie cancer</td> <td>30.23</td> <td>20</td> <td>AMER signaling pathway</td> <td>10.00</td> <td>12</td>	Deperentie cancer	30.23	20	AMER signaling pathway	10.00	12
Metandnia 30.11 20 Settoline give synapse 10.45 12 Chronic myeloid leukemia 34.21 26 Adrenergic signaling in cardiomyocytes 7.59 11 Fluid shear stress and atherosclerosis 18.71 26 Adrenergic signaling in cardiomyocytes 7.59 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Adpocytokine signaling pathway 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 C-type lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.53 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and 9.43 10 Influenza A 13.45 23 Leishmaniasis <td>Meleneme</td> <td>34.07</td> <td>20</td> <td>Congevity regulating pathway</td> <td>19.33</td> <td>12</td>	Meleneme	34.07	20	Congevity regulating pathway	19.33	12
Chronic Infestion Rescuential 54-21 20 Adherens junction 15.36 11 Fluid shear stress and atherosolerosis 18.71 26 Adherens junction 15.28 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Glioma 33.33 25 Leukocyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 15.94 11.21 24 Adherens junction 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 10 Chagas disease (American trypanosomiasis) 22.33 23 Long-term potentiation 14.93 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and solation 9.43 10 Influenza A 13.45 23 Leishmaniasis 10.42 10 Renal cell carcinoma 33.33 23 Th1 and Th2 cell differentiation	Chronic mycloid loukomia	34.21	20	Adronargia signaling in cardiamyopytop	7 50	12
Industrial stress and attrefosciencies 16.71 20 Autrefers junction 10.20 11 JAK-STAT signaling pathway 15.43 25 Fc gamma R-mediated phagocytosis 12.09 11 Glioma 33.33 25 Leukocyte transendothelial migration 9.82 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 15.94 11 Strongen signaling pathway 17.39 24 Pertussis 14.47 11 Chype lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.53 10 Toxopasmosis 20.35 23 Long-term potentiation 14.93 10 Toxopasmosis 12.85 23 Leishmaniasis 13.51 10 Influenza A 13.45 23 Ameliater singaling pathway 10.42 10 Renal cell carcinoma 33.33 23 Th1 and Th2 cell differentiation 9.78 9 Chemokine signaling pathway 14.86 22 Type	Eluid about atroac and athorocolorocia	10 71	20	Adherene iupation	15.09	11
Charles Signaling pathway 10.45 2.5 To gamma Instruction phagocytosis 12.09 11 Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Chype lectin receptor signaling pathway 25.12 23 NF-kappa B signaling pathway 10.53 10 Chype lectin receptor signaling pathway 22.33 23 Long-term potentiation 14.93 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and action 1.51 10 Influenza A 13.45 23 Leishmaniasis 13.51 10 Influenza A 13.45 23 Amebiasis 10.42 10 Renal cell carcinoma 33.33 23 That ad Th2 cell differentiation 9.78 9 Chemokine signaling pathway 14.86 22 Type II diabetes mellitus <	INK STAT signaling pathway	15.71	20	For gamma P modiated phagacytosic	12.20	11
Chronia 53.53 2.5 Let Kocyle Partsel for United Hill gradoff 5.62 FT Neurotrophin signaling pathway 20.17 24 Melanogenesis 10.89 11 Regulation of actin cytoskeleton 11.21 24 Melanogenesis 10.89 11 Stradge signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 C-type lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.33 10 Chagas disease (American trypanosomiasis) 22.33 23 Long-term potentiation 14.93 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and 9.43 10 Influenza A 12.85 23 Leishmaniasis 13.51 10 Influenza A 13.45 23 Amebiasis 10.42 10 Renal cell carcinoma 33.33 23 Th1 and Th2 cell differentiation 9.78 9 <	Clieme	10.40	25	Leukaanta transpondethalial migration	12.09	11
Regulation of actin cytoskeleton 11.21 24 Adipocytokine signaling pathway 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 C-type lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.53 10 Chagas disease (American trypanosomiasis) 22.33 23 Long-term potentiation 14.93 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and 9.43 10 Toxoplasmosis 12.85 23 Leishmaniasis 13.51 10 Influenza A 13.45 23 Amebiasis 13.51 10 Influenza A 13.45 23 Amebiasis 10.42 10 Phospholipase D signaling pathway 11.58 22 Long-term depression 9.78 9 Chemokine signaling pathway 11.58 22 Long-term depression 15.00 9 Phospholipase D signaling pathway 14.86 22 Type II diabetes mellitus 19.57 9 Signaling pathway regulating pluripotency of stem cells 15.83 22 Amyotrophic lateral sclerosis (ALS) 17.65 9 Prolactin signaling pathway 16.41 21 Apoptosis 24.24 8 Autophagy 16.41 21 Apoptosis 24.24 8 VEGF signaling pathway 14.55 8 Autophagy 16.41 21 Apoptosis 14.55 8 Choline metabolism in cancer 21.21 21 Shigellosis 14.55 8 Choline metabolism in cancer 21.21 21 Shigellosis 12.31 8 Avatophaging pathway 18.18 20	Nourotrophin signaling pathway	20.17	20	Molonogonosia	10.90	11
Regulation of actin Cytoskeeton 11.21 24 Addpoprovide signaling pathway 15.94 11 Estrogen signaling pathway 17.39 24 Pertussis 14.47 11 Small cell lung cancer 25.81 24 Thyroid cancer 29.73 11 C-type lectin receptor signaling pathway 22.12 23 NF-kappa B signaling pathway 10.53 10 Chagas disease (American trypanosomiasis) 22.33 23 Long-term potentiation 14.93 10 Toxoplasmosis 20.35 23 Parathyroid hormone synthesis, secretion and 9.43 10 Tuberculosis 12.85 23 Leishmaniasis 13.51 10 Influenza A 13.45 23 Amebiasis 10.42 10 Renal cell carcinoma 33.33 23 Th1 and Th2 cell differentiation 9.78 9 Chemokine signaling pathway 11.58 22 Long-term depression 15.00 9 Phospholipase D signaling pathway 14.86 22 Type II diabetes mellitus 19.57 9 Signaling pathway regulating puthypotency of stem cells 15.83 <td>Regulation of actin autoakoleton</td> <td>20.17</td> <td>24</td> <td>Adipage taking signaling pathway</td> <td>15.04</td> <td>11</td>	Regulation of actin autoakoleton	20.17	24	Adipage taking signaling pathway	15.04	11
Latiogen Signaling pathway17.5924refutssis14.4711Small cell lung cancer25.8124Thyroid cancer29.7311C-type lectin receptor signaling pathway22.1223NF-kappa B signaling pathway10.5310Chagas disease (American trypanosomiasis)22.3323Long-term potentiation14.9310Toxoplasmosis20.3523Parathyroid hormone synthesis, secretion and action9.4310Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathway14.8622Type II diabetes mellitus19.579Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis14.558Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer21.2121Shigellosis1	Estragon signaling pathway	17.20	24	Portuosis	14.47	11
Sinial cell full greated23.5124Infyridic tarted25.7511C-type lectin receptor signaling pathway22.1223NF-kappa B signaling pathway10.5310Chagas disease (American trypanosomiasis)22.3323Long-term potentiation14.9310Toxoplasmosis20.3523Parathyroid hormone synthesis, secretion and9.4310Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathway regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3323Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism	Small cell lung concor	25.91	24	Thursid cancer	20.72	11
Chype technine ception signaling pathway22.122.31010.3510Chagas disease (American trypanosomiasis)22.3323Long-term potentiation14.9310Toxoplasmosis20.3523Parathyroid hormone synthesis, secretion and action9.4310Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer21.2121Shigellosis12.318Choline metabolism in cancer2	C type logtin receptor signaling pathway	20.01	24	NE kappa R signaling pathway	29.73	10
Chages disease (Afferican Hyparlosof hasis)22.3523Edity feit in potentiation14.5510Toxoplasmosis20.3523Parathyroid hormone synthesis, secretion and action9.4310Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathway regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.182020Aldosterone-regulated sodium reabsorption16.226	Chagas discass (American trapanosomiasis)	22.12	23	Long torm potentiation	14.02	10
Tuberculosis20.3320.3320.3320.3320.3320.3320.3320.3320.3320.3510Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318CAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226Thy signaling pathway18.182011.52611.526		22.00	20	Derethyroid bermana authoria, appretion and	0.42	10
Tuberculosis12.8523Leishmaniasis13.5110Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318CAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.182018.182011.5111.51	TUXUPIASTIUSIS	20.55	23	action	9.43	10
Influenza A13.4523Amebiasis10.4210Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318CAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.1820444	Tuberculosis	12.85	23	Leishmaniasis	13.51	10
Renal cell carcinoma33.3323Th1 and Th2 cell differentiation9.789Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318CAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.1820444	Influenza A	13.45	23	Amebiasis	10.42	10
Chemokine signaling pathway11.5822Long-term depression15.009Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.1820444	Renal cell carcinoma	33.33	23	Th1 and Th2 cell differentiation	9.78	9
Phospholipase D signaling pathway14.8622Type II diabetes mellitus19.579Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.18204444	Chemokine signaling pathway	11.58	22	Long-term depression	15.00	9
Signaling pathways regulating pluripotency of stem cells15.8322Amyotrophic lateral sclerosis (ALS)17.659Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.18204444	Phospholipase D signaling pathway	14.86	22	Type II diabetes mellitus	19.57	9
Prolactin signaling pathway31.4322Epithelial cell signaling in Helicobacter pylori infection13.249Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.18204444	Signaling pathways regulating pluripotency of stem cells	15.83	22	Amyotrophic lateral sclerosis (ALS)	17.65	9
Acute myeloid leukemia33.3322Mitophagy12.318Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.18201111	Prolactin signaling pathway	31.43	22	Epithelial cell signaling in Helicobacter pylori infection	13.24	9
Autophagy16.4121Apoptosis24.248VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.182020Aldosterone-regulated sodium reabsorption16.226	Acute myeloid leukemia	33.33	22	Mitophagy	12.31	8
VEGF signaling pathway35.5921Regulation of lipolysis in adipocytes14.558Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.182020Aldosterone-regulated sodium reabsorption16.226	Autophagy	16.41	21	Apoptosis	24.24	8
Choline metabolism in cancer21.2121Shigellosis12.318cAMP signaling pathway9.4320Aldosterone-regulated sodium reabsorption16.226TNF signaling pathway18.182020Aldosterone-regulated sodium reabsorption16.226	VEGF signaling pathway	35.59	21	Regulation of lipolysis in adipocytes	14.55	8
cAMP signaling pathway 9.43 20 Aldosterone-regulated sodium reabsorption 16.22 6 TNF signaling pathway 18.18 20	Choline metabolism in cancer	21.21	21	Shigellosis	12.31	- 8
TNF signaling pathway 18.18 20	cAMP signaling pathway	9.43	20	Aldosterone-regulated sodium reabsorption	16.22	6
	TNF signaling pathway	18.18	20	G		

tumor nodules in different groups. (C) The HE staining of lung from A/J mice in different groups. a, control group; b, model group; c, DDP group; d, 5.2 g/kg AR group; e, 2.6 g/kg AR group. (D) and (E) IHC staining for p-Bcl-2 of lung from A/J mice in different groups. a, control group; b, model group; c, DDP group; d, 5.2 g/kg AR group. e, 2.6 g/kg AR group. (F) and (G) IHC staining for p-Bcl-2 of lung from A/J mice in different groups. a, control group; b, model group; c, DDP group; d, 5.2 g/kg AR group. e, 2.6 g/kg AR group. e, 2.6 g/kg AR group. Compared with the model group; *p < 0.05, **p < 0.01; compared with the control group, #p < 0.05, #p < 0.01.

Enrichment Analysis and Mechanism Prediction

Go enrichment analysis was performed on 160 potential targets, and limiting annotation was selected to homo sapiens. The top 10 terms of biological process (Figure 2A), molecular function (Figure 2B), and cell composition (Figure 2C) were selected. The results indicated that AR-regulated lung cancer mainly related to cellular process, biological regulation, response to stimulus, regulation of biological process, regulation of cellular process, and

metabolic process, and mainly involved binding, protein binding, and catalytic activity in molecular function, and cell part, intracellular, intracellular part, cytoplasm, and intracellular organelle in cell composition.

KEGG analysis was performed using the ClueGO database in Cytoscape 3.6.1, and 115 KEGG pathways with *p*-value less than or equal to 0.01 were obtained (**Table 3**). In order to more intuitively show the relationship among potential targets and signal pathways, the potential target-signal pathway network was

A group, (B) The protein brands of p53, p-Bcl-2, mTOR and GAPDH. (C) p53 expression in NHBE by western blot analysis. (D) p-Bcl-2 expression in NHBE by western blot analysis. (E) mTOR expression in NHBE by western blot analysis analysis and (E) mTOR expression in

constructed (**Figure 2D**). According to the KEGG analysis, AR in the treatment of lung cancer was related to PI3K-Akt signaling pathway, MAPK signaling pathway, Ras signaling pathway, *etc.*

Experimental Validation of AR in the Treatment of Lung Cancer In Vivo Body Weight Change and Overall Appearance

The body weight changes of the animals in different groups were shown in **Figure 3A**. Compared with the control group, the body weight of mice in other four groups were decreased, and mice in model group had the smallest body weight among these four groups (p < 0.01). Besides, compared with the model group, the body weight of 5.2 g/kg AR group and 2.6 g/kg AR group were significantly increased (p < 0.01, p < 0.05), and the most significant effect was observed in 5.2 g/kg AR group. The appearance of all mice were observations throughout the experimental period, and the results showed that the mice in

model group suffered from nose bleeding and sparse neck hair, and no obvious symptoms in other four groups were observed.

Histopathological Study

After 28 weeks, lungs were removed from the mice for analysis. Except for the control group, what were observed in the other groups showed obvious lung lesions, tumor-like proliferation, and tumor nodules. Compared with the model group, the mice by DDP, 5.2 g/kg AR, and 2.6 g/kg AR treatment were able to significantly reduce (p < 0.01) the number of lung tumor nodules (**Figure 3B**). The HE staining and IHC staining were used to determine the success of the lung cancer model and the therapeutic effect of AR against lung cancer. As shown in **Figure 3C**, the HE staining results showed that lung tissues of mice in the control group had the intact structure, clear alveolar outline, thin alveolar septum, and no sign of inflammation, while the lung tissues disappear in the model group had serious damage to the alveolar structure, cancerous proliferation, and fibrosis,

FIGURE 5 [AR on p53, p-Bcl-2, and mTOR expression in NHBE cells by immunofluorescence staining and real-time PCR technology. (A) Representative pictures of p53, p-Bcl-2, and mTOR immunofluorescence in different groups. (B) (C) and (D) Relative p53, p-Bcl-2, and mTOR expression in NHBE by immunofluorescence staining. (E) and (F) Relative mRNA level of cellular and nuclear p53, respectively. (G) and (H) Relative mRNA level of p-Bcl-2 and mTOR, respectively. Compared with the model group, *p < 0.05, **p < 0.01; compared with the control group, #p < 0.05, #p < 0.01.

which indicates that the lung cancer model of A/J mice was successfully constructed. In addition, the administration of DDP and AR prevented the structural changes in the lung tissue and the infiltration of inflammatory cell, and improved lung tissue integrity. In addition, the above findings also suggest the effectiveness of AR in the treatment of lung cancer. The results of IHC staining were consistent with the HE staining results. In addition, the IHC staining results indicated that compared with the control group, the p53 expression (**Figures 3D,E**) was significantly decreased (p < 0.01), and the p-Bcl-2 expression (**Figure 3F,G**) was significantly increased (p < 0.01) in the lung tissue of model group. The administration of AR could upregulate the p53 expression and downregulate the p-Bcl-2 expression in the lung tissue, which indicated that AR can reverse the expression of p53 and p-Bcl-2 in lung cancer mice.

Potential Targets and Mechanism Validation *In Vitro*

Astragali Radix Treatment Inhibited Cell Autophagy Induced by CSE

CSE was used to induce autophagy in NHBE cells. The result showed that a large number of autophagy vacuoles appeared in the cytoplasm. Besides, autophagosome fuse with lysosome to form autolysosome, which decompose and destroy the organelles and damage the normal function of cells. After treatment with AR, the number of autophagosomes and autolysosomes in the cells was significantly reduced, and the structural integrity of the cells was increased, as shown in **Figure 4A**.

Astragali Radix on p53, p-Bcl-2 and Mammalian Target of Rapamycin Expression in NHBE Cells

The potential targets, p53, p-Bcl-2, and mTOR, predicted by network pharmacology technology, were verified at the protein and gene levels. As shown in **Figures 4B,C**, compared with the model group, the p53 expression in NHBE cells was significantly increased in the 1000 µg/ml AR group and 500 µg/ml AR group (p < 0.01). As shown in **Figures 5A,B**, immunofluorescence staining analyses showed that 1000 µg/ml AR and 500 µg/ml AR could increase the expression of p53 (p < 0.01). RT-PCR results (**Figures 5E,F**) showed that the relative mRNA level of cellular p53 has been increased (p < 0.01) and the relative mRNA level of nuclear p53 has been decreased (p < 0.01) by the treatment of 1000 µg/ml AR, respectively. The above results indicated that AR could promote p53 expression, thereby inhibiting autophagy and protecting cells from autophagy.

Western blot analysis (**Figures 4B,D**) and immunofluorescence (**Figures 5A,C**) showed that p-Bcl-2 expression was significantly reduced in NHBE cells after treatment with AR (p < 0.01). In addition, compared with model group, the relative mRNA level of p-Bcl-2 was significantly reduced (p < 0.01) in 1000 µg/ml AR group and 500 µg/ml AR group (**Figure 5G**). The above results indicated that AR could reduce the phosphorylation level of Bcl-2, inhibit autophagy, and protect cells.

As shown in **Figures 4B,E**, compared with the model group, mTOR expression in NHBE cells was significantly increased in

the 1000 µg/ml AR group and 500 µg/ml AR group (p < 0.01). RT-PCR results (**Figure 5H**) showed that the relative mRNA level of mTOR has also been increased by the treatment of 1000 µg/ml AR and 500 µg/ml AR (p < 0.01). Immunofluorescence staining showed increased expression of mTOR expression in AR-treated cells at the concentration of 1000 µg/ml AR and 500 µg/ml AR (**Figures 5A,D**, p < 0.01). mTOR is a major negative regulator of autophagy and a key protein for controlling autophagy. The above results showed that AR could increase mTOR expression and regulate cell autophagy to protect cells.

Effect of Astragali Radix on p53/AMPK/Mammalian Target of Rapamycin Signaling Pathway

According to the KEGG analysis, AR in the treatment of lung cancer was mainly related to PI3K-Akt signaling pathway. So, the expression of molecules downstream of the PI3K-Akt signaling pathway was mainly explored. Except for p53, p-Bcl-2, and mTOR (Figures 4,5), the expression of AMPK and Beclin1 at the protein and gene levels was also determined. As shown in Figure 6, compared with model group, Western blot analysis and immunofluorescence staining showed a significant reduction (p <0.01) on AMPK and Beclin1 expression in NHBE cells after being treated with 1000 µg/ml AR. Besides, the relative mRNA level of AMPK and Beclin1 was significantly reduced (p < 0.01) in 1000 µg/ml AR group and 500 µg/ml AR group. It has been documented that p53 mediates autophagy through an AMPK/ mTOR-dependent pathway (Tasdemir et al., 2008). AMPK activation leads to autophagy through negative regulation of mTOR and that many other factors involved in the autophagic process govern autophagy through AMPK/mTOR signaling (Jing et al., 2011). Based on the above research results, we speculate that AR in the treatment of lung cancer may through p53/AMPK/ mTOR signaling pathway (Figure 7), but further validation is still required.

Screening of Effective Components by Metabolism *in vitro* of Rat Intestinal Flora and Cell Membrane–Immobilized Chromatography

The UPLC-Q-TOF-MS analysis results indicated that these components in AR have undergone different degrees of metabolic transformation under the action of intestinal flora, and the typical total ion chromatogram of blank bacterial solution and the intestinal flora incubation solution of AR (2 h) as shown in Supplementary Figure S3. Detailed metabolite information was listed in Table 4, and the metabolic pathway mainly involves oxidation, reduction, hydrolytic deglycosylation, etc. The results of cell membrane-immobilized chromatography are shown in Figure 8. The six effective components, such as calycosin-7-Oβ-D-glucoside, ononin, calycosin, astragaloside IV, metabolite of astragaloside II (M5), and cycloastragenol, can bind to cell membranes (Figure 8A). The three components, that is, reduction product of calycosin (M9), calycosin, and formononetin, can enter into the cell through the cell membrane by passive diffusion (Figure 8B).

compared with the control group, #p < 0.05, ##p < 0.01.

Ultimately, these effective components, that is, calycosin-7-O- β -D-glucoside, ononin, calycosin, astragaloside IV, astragaloside II, cycloastragenol, and formononetin, together form the material basis of AR for prevention and treatment of lung cancer, and they come from the two-type components, flavone and saponin.

DISCUSSION

In this study, an integrated strategy for effective-component discovery of AR in the treatment of lung cancer was established. The results indicated that the integrated strategy can be applied to the efficiently screen effective components in complex systems. In our research on the bioactivity of AR, we found that the administered doses were high compared with single component drug. Therefore, the screening and confirmation of effective components in this article will help to reduce the dose by removing the ineffective components.

Modern pharmacological studies have shown that the activity of drugs is closely related to their cell membrane affinity and permeability. An important step in the role of TCM is the binding of effective components to cell membranes, specific enzymes, or receptors in cells. In this study, A549 cells were used as the separation carrier, AR was taken as the research object, and the specific affinity between each component in AR and cells was determined by cell membrane-immobilized chromatography. It is worth noting that the screening results show that calycosin-7- $O-\beta$ -D-glucoside, ononin, calycosin, astragaloside IV. astragaloside II, cycloastragenol, and formononetin may be effective components of AR in the treatment of lung cancer, and which is consistent with the previous research results of AR in the prevention and treatment of cancer (He et al., 2013; Cheng et al., 2016; Xu et al., 2018). Through the ages, TCM have shown good efficacy in treating many and complex diseases (Sreenivasmurthy et al., 2017). The above research on the effective components of AR once again proved that the components of TCM are very complex and diverse, and

TABLE 4	Identification of co	mponents in AR b	v usino	UPLC-ESI-Q-TOF-MS	method in negative ion mode.
			,		inouriou in mogacito ion mode

No.	RT (min)	Identified compounds	Element composition	Ionization	Prototype	Metabolic way
1	11.09	Astragaloside I	C ₄₅ H ₇₂ O ₁₆	[M+COOH]-	-	-
2	13.52	Astragaloside II	C43H70O15	[M+COOH]	-	-
3	12.78	Astragaloside IV	C41H68O14	[M+COOH]	-	-
4	9.83	Calycosin	C ₁₆ H ₁₂ O ₅	[M-H]⁻	-	-
5	6.04	Calycosin -7-O-β-D-glucoside	C ₂₂ H ₂₂ O ₁₀	[M+COOH] ⁻	-	-
6	8.72	Ononin	C ₂₂ H ₂₂ O ₉	[M+COOH] ⁻	-	-
7	13.64	M1	C ₄₅ H ₆₈ O ₁₆	[M-H]⁻	Astragaloside I	dehydrogenation
8	13.46	M2	C ₃₆ H ₆₀ O ₁₀	[M-H]⁻	Astragaloside I/Astragaloside II/Astragaloside IV	glycosylation
9	13.57	M3	C ₃₉ H ₆₂ O ₁₁	[M+COOH]	Astragaloside I	glycosylation
10	14.97	M4	C ₃₀ H ₅₀ O ₅	[M+COOH]	Astragaloside I/Astragaloside II/Astragaloside IV	glycosylation
11	13.89	M5	C37H60O9	[M+COOH]	Astragaloside II	glycosylation+dehydroxylation
12	13.47	M6	C35H58O9	[M+COOH]	Astragaloside IV	glycosylation
13	12.14	M7	C ₁₆ H ₁₂ O ₄	[M-H]⁻	Calycosin/Ononin	dehydroxylation
14	10.68	M8	C ₁₆ H ₁₆ O ₅	[M-H]⁻	Calycosin	hydrogenation+open loop
15	12.34	M9	C ₁₆ H ₁₆ O ₄	[M-H]⁻	Calycosin	hydrogenation+deoxidation
16	4.781	M10	$C_{22}H_{22}O_{11}$	[M+COOH]-	Calycosin	hydrogenation+glucuronidation

multicomponent and multi-target may be the characteristic of TCM in treating diseases.

Autophagy has been implicated in a wide range of human diseases, including lung disorders such as lung cancer, chronic obstructive pulmonary disease, and lung infection diseases (Ryter and Choi, 2010; Ryter et al., 2012; Liu, et al., 2017; He et al., 2019). The article mainly investigated the mechanism of AR in the treatment of lung cancer from the perspective of autophagy according to the predictions of network pharmacology. The results suggested that AR may inhibit the development of lung

cancer by reducing the p53 expression in the nucleus and promoting p53 expression in the cytoplasm, downregulating the level of p-Bcl-2 and promoting the autophagy inhibitory factor mTOR expression. In order to further explore the mechanism of AR in the treatment of lung cancer, except for the p53, p-Bcl-2 and mTOR, the expression of other molecules downstream of the PI3K-Akt signaling pathway was explored, including AMPK and Beclin1. Under stress, AMPK can promote the dissociation and phosphorylation of autophagy-related gene Bcl-2 (Zhou et al., 2011; He et al., 2012; Meng et al., 2015) and

inhibit mTOR expression (Chen et al., 2015; Prietodomínguez et al., 2016; Yu et al., 2017), and ultimately promote the occurrence and development of autophagy. Beclin1 is an interacting protein of Bcl-2 (He et al., 2013); binding of Bcl-2 to Beclin1 inhibits Beclin1-mediated autophagy *via* sequestration of Beclin1 away from class III PI3K; and the interaction between Bcl-2 and Beclin1 is related to mTOR kinase-dependent phosphorylation of Bcl-2 (Levine et al., 2008; Pattingre et al., 2008; Chiang et al., 2018; Xu and Qin, 2019). The preliminary research results indicated that the regulation of autophagy may be a useful strategy in the treatment of lung cancer.

In this study, an integrated strategy for effective-component discovery of AR in the treatment of lung cancer was established,

which provides a valuable reference mode for finding the effective components of TCM. In addition, preliminary research results indicated that AR in the treatment of lung cancer may through p53/AMPK/mTOR signaling pathway, which laid a foundation for further in-depth study of the mechanism of AR in lung cancer. Despite some promising results were obtained in the study, there are still several potential limitations to improve. First, we have to admit that network pharmacology virtual screening has some limitations, and the predicted effective components and potential targets may need to be further comprehensively verified through a variety of different technologies. Even though the study adopts an integrated research strategy combining network analysis and

in vitro/vivo studies, it still could not avoid some false positives. Moreover, we found that the dosage of AR was very high compared with single-component drug. Therefore, it is necessary to further knock out invalid components of AR to reduce dosage. Finally, the preliminary research results indicated that AR in the treatment of lung cancer may be through p53/AMPK/mTOR signaling pathway; certainly, further experimental validation should be needed to confirm this hypothesis.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, and further inquiries can be directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Ethics Committee of Nanjing University of Chinese Medicine.

REFERENCES

- Chen, Y. C., Chen, D., Liu, S. J., Yuan, T. Y., Guo, J., Fang, L. H., et al. (2019). Systematic elucidation of the mechanism of genistein against pulmonary hypertension via network pharmacology approach. *Int. J. Mol. Sci* 20 (22), 5569. doi:10.3390/ijms20225569
- Chen, Z. T., Zhao, W., Qu, S., Li, L., Lu, X., Su, F., et al. (2015). PARP-1 promotes autophagy via the AMPK/mTOR pathway in CNE-2 human nasopharyngeal carcinoma cells following ionizing radiation, while inhibition of autophagy contributes to the radiation sensitization of CNE-2 cells. *Mol. Med. Rep* 12 (2), 1868–1876. doi:10.3892/mmr.2015.3604
- Cheng, H., Ge, X., Zhuo, S., Gao, Y., Zhu, B., Zhang, J., et al. (2018). β-elemene synergizes with gefitinib to inhibit stem-like phenotypes and progression of lung cancer via down-regulating EZH2. *Front. Pharmacol* 9, 1413. doi:10.3389/ fphar.2018.01413
- Cheng, X. D., Gu, J. F., Yuan, J. R., Feng, L., and Jia, X. B. (2016). Suppression of A549 cell proliferation and metastasis by calycosin via inhibition of the PKCα/ERK1/2 pathway: an *in vitro* investigation. *Mol. Med. Rep* 13 (6), 3709–3710. doi:10.3892/mmr.2016.4976
- Chiang, W. C., Wei, Y., Kuo, Y. C., Wei, S., Zhou, A., Zou, Z., et al. (2018). Highthroughput screens to identify autophagy inducers that function by disrupting Beclin 1/Bcl-2 binding. ACS Chem. Biol 13 (8), 2247–2260. doi:10.1021/ acschembio.8b00421
- Fishilevich, S., Zimmerman, S., Kohn, A., Iny Stein, T., Olender, T., Kolker, E., et al. (2016). Genic insights from integrated human proteomics in GeneCards. *Database* 2016, baw030. doi:10.1093/database/baw030
- Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., and Zoete, V. (2014). SwissTargetPrediction: a web server for target prediction of bioactive small molecules. *Nucleic Acids Res* 42, W32–W38. doi:10.1093/nar/gku293
- Gu, S., and Lai, L. H. (2020). Associating 197 Chinese herbal medicine with drug targets and diseases using the similarity ensemble approach. Acta Pharmacol. Sin 41, 432–438. doi:10.1038/s41401-019-0306-9
- He, C., Bassik, M. C., Moresi, V., Sun, K., Wei, Y., Zou, Z., et al. (2012). Exerciseinduced BCL2-regulated autophagy is required for muscle glucose homeostasis. *Nature* 481 (7382), 511–515. doi:10.1038/nature10758
- He, C., Zhu, H., Li, H., Zou, M., and Xie, Z. (2013). Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against

AUTHOR CONTRIBUTIONS

BY and LF conceived the idea of the study and prepared the manuscript. NY, YC, and MZ conducted the experiments and analyzed data. YL, ZX, and BW designed the experiments and participated in the interpretation of experimental results. LF revised the manuscript. XBJ supervised the study. All authors confirmed the final manuscript.

FUNDING

This work was financially supported by the National Key research and development program of China (2018YFC1706900) and "Double First-Class" University project of China Pharmaceutical University (CPU2018GF07; CPU2018GY11).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.580978/full#supplementary-material.

cardiomyocyte apoptosis in diabetes. Diabetes62 (4), 1270–1281. doi:10.2337/ db12-0533

- He, H., Zhou, X., Wang, Q., and Zhao, Y. (2013). Does the couse of astragaluscontaining Chinese herbal prescriptions and radiotherapy benefit to non-smallcell lung cancer treatment: a meta-analysis of randomized trials. *Evid Based Complement Alternat Med*, 2013, 426207. doi:10.1155/2013/426207
- He, Y., Liu, H., Jiang, L., Rui, B., Mei, J., and Xiao, H. (2019). miR-26 Induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-β1-JNK signaling pathway. *Front. Pharmacol* 9, 1509. doi:10.3389/fphar.2018.01509
- Jiang, L., Wang, W., He, Q., Wu, Y., Lu, Z., Sun, J., et al. (2017). Oleic acid induces apoptosis and autophagy in the treatment of Tongue Squamous cell carcinomas. *Sci. Rep* 7 (1), 11277. doi:10.1038/s41598-017-11842-5
- Jing, K., Song, K. S., Shin, S., Kim, N., Jeong, S., Oh, H. R., et al. (2011). Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7 (11), 1348–1358. doi:10.4161/auto.7.11. 16658
- Ke, B., Wu, X., Yang, Q., Huang, Y., Wang, F., Gong, Y., et al. (2019). Yi-qi-yangyin-tian-sui-fang enhances cisplatin-induced tumor eradication and inhibits interleukin-7 reduction in non-small cell lung cancer. *Biosci. Rep* 39 (6), BSR20190052. doi:10.1042/BSR20190052
- Levine, B., Sinha, S., and Kroemer, G. (2008). Bcl-2 family members: dual regulators of apoptosis and autophagy. *Autophagy* 4 (5), 600–606. doi:10. 4161/auto.6260
- Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang, J., Yang, Q., et al. (2018). Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. *Nucleic Acids Res* 46 (D1), D1121–D1127. doi:10.1093/nar/gkx1076
- Liu, G., Pei, F., Yang, F., Li, L., Amin, A. D., Liu, S., et al. (2017). Role of autophagy and apoptosis in non-small-cell lung cancer. *Int. J. Mol. Sci* 18 (2), 367. doi:10. 3390/ijms18020367
- Lou, J. S., Yan, L., Bi, C. W., Chan, G. K., Wu, Q., Liu, Y., et al. (2016). Yu Ping Feng San reverses cisplatin-induced multi-drug resistance in lung cancer cells via regulating drug transporters and p62/TRAF6 signalling. *Sci. Rep* 6 (1), 31926. doi:10.1038/srep31926
- Meng, F. Y., Ning, H., Sun, Z. X., Huang, F. F., Li, Y. C., Chu, X., et al. (2015). Ursolic acid protects hepatocytes against lipotoxicity through activating

- Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., et al. (2008). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. *Cell* 122 (6), 927–939. doi:10.1016/j.cell.2005.07.002
- Prietodominguez, N., Ordonez, R., Fernandez, A., Garciapalomo, A., Muntane, J., Gonzalezgallego, J., et al. (2016). Modulation of autophagy by sorafenib: effects on treatment response. *Front. Pharmacol* 7, 151. doi:10.3389/fphar.2016.00151
- Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014). TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. *J. Cheminf* 6 (1), 13. doi:10.1186/1758-2946-6-13
- Ryter, S. W., and Choi, A. M. (2010). Autophagy in the lung. *Proc. Am. Thorac. Soc* 7 (1), 13–21. doi:10.1513/pats.200909-101JS
- Ryter, S. W., Nakahira, K., Haspel, J. A., and Choi, A. M. (2012). Autophagy in pulmonary diseases. *Annu. Rev. Physiol* 74 (4), 377–401. doi:10.1164/rccm. 201512-2468SO. doi:10.1146/annurev-physiol-020911-153348
- Sreenivasmurthy, S. G., Liu, J. Y., Song, J. X., Yang, C. B., Malampati, S., Wang, Z. Y., et al. (2017). Neurogenic traditional Chinese medicine as a promising strategy for the treatment of alzheimer's disease. *Int. J. Mol. Sci* 18 (2), 272. doi:10.3390/ijms18020272
- Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., et al. (2008). Regulation of autophagy by cytoplasmic p53. *Nat. Cell Biol* 10, 676–687. doi:10.1038/ncb1730
- Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. *CA A Cancer J. Clin* 65 (2), 87–108. doi:10. 3322/caac.21262
- Wang, H., Zhang, W. X., Cheng, Y. T., Zhang, X. Y., Xue, N. N., Wu, G. R., et al. (2018). Design, synthesis and biological evaluation of ligustrazine-flavonoid derivatives as potential anti-tumor agents. *Molecules* 23 (9), 2187. doi:10.3390/ molecules23092187
- Wang, S., Xu, X., Hu, Y., Lei, T., and Liu, T. (2019). Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/Akt/mTOR signaling pathway *in vivo* and *in vitro*. *Front. Pharmacol* 10, 1460. doi:10.3389/ fphar.2019.01460
- Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., et al. (2017). PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. *Nucleic Acids Res* 45, W356–W360. doi:10.1093/nar/gkx374
- Xiao, Z., Wang, C. Q., Zhou, M. H., Hu, S. S., Jiang, Y., Huang, X. R., et al. (2019). Clinical efficacy and safety of Aidi injection plus paclitaxel-based chemotherapy for advanced non-small cell lung cancer: a meta-analysis of 31 randomized

controlled trials following the PRISMA guidelines. J. Ethnopharmacol 228, 110-122. doi:10.1016/j.jep.2018.09.024

- Xu, F., Cui, W. Q., Wei, Y., Cui, J., Qiu, J., Hu, L. L., et al. (2018). Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. *J. Exp. Clin. Canc. Res* 37 (1), 207. doi:10. 1186/s13046-018-0878-0
- Xu, H. D., and Qin, Z. H. (2019). Beclin 1, Bcl-2 and autophagy. Adv. Exp. Med. Biol 1206, 109–126. doi:10.1007/978-981-15-0602-4_5
- Xu, H. Y., Zhang, Y. Q., Liu, Z. M., Chen, T., Lv, C. Y., Tang, S. H., et al. (2019). ETCM: an encyclopaedia of traditional Chinese medicine. *Nucleic Acids Res* 47 (D1), D976–D982. doi:10.1093/nar/gky987
- Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C., and Shi, T. (2012). TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. *Nucleic Acids Res* 41, D1089–D1095. doi:10.1093/nar/gks1100
- Yu, Y., Hou, L., Song, H., Xu, P., Sun, Y., and Wu, K. (2017). Akt/AMPK/mTOR pathway was involved in the autophagy induced by vitamin E succinate in human gastric cancer SGC-7901 cells. *Mol. Cell. Biochem* 424 (1), 173–183. doi:10.1007/s11010-016-2853-4
- Zhang, H. W., Hu, J. J., Fu, R. Q., Liu, X., Zhang, Y. H., Li, J., et al. (2018). Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p7086K/ ULK signaling pathway in human breast cancer cells. *Sci. Rep* 8 (1), 11255. doi:10.1038/s41598-018-29308-7
- Zhou, F., Yang, Y., and Xing, D. (2011). Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. *FEBS J* 278 (3), 403–413. doi:10. 1111/j.1742-4658.2010.07965.x
- Zhu, X. Y., Guo, D. W., Lao, Q. C., Xu, Y. Q., Meng, Z. K., Xia, B., et al. (2019). Sensitization and synergistic anti-cancer effects of Furanodiene identified in zebrafish models. *Sci. Rep* 9 (1), 4541. doi:10.1038/s41598-019-40866-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Yang, Yang, Chen, Zhu, Lian, Xiong, Wang, Feng and Jia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.