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The green tea catechin epigallocatechin
gallate induces cell cycle arrest and shows
potential synergism with cisplatin in biliary
tract cancer cells
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Abstract

Background: The green tea catechin epigallocatechin gallate (EGCG) was shown to effectively inhibit tumor growth in
various types of cancer including biliary tract cancer (BTC). For most BTC patients only palliative therapy is possible,
leading to a median survival of about one year. Chemoresistance is a major problem that contributes to the high
mortality rates of BTC. The aim of this study was to investigate the cytotoxic effect of EGCG alone or in combination
with cisplatin on eight BTC cell lines and to investigate the cellular anti-cancer mechanisms of EGCG.

Methods: The effect of EGCG treatment alone or in combination with the standard chemotherapeutic cisplatin on cell
viability was analyzed in eight BTC cell lines. Additionally, we analyzed the effects of EGCG on caspase activity, cell cycle
distribution and gene expression in the BTC cell line TFK-1.

Results: EGCG significantly reduced cell viability in all eight BTC cell lines (p < 0.05 or p < 0.01, respectively, for most
cell lines and EGCG concentrations > 5 μM). Combined EGCG and cisplatin treatment showed a synergistic cytotoxic
effect in five cell lines and an antagonistic effect in two cell lines. Furthermore, EGCG reduced the mRNA levels of
various cell cycle-related genes, while increasing the expression of the cell cycle inhibitor p21 and the apoptosis-related
death receptor 5 (p < 0.05). This observation was accompanied by an increase in caspase activity and cells in the
sub-G1 phase of the cell cycle, indicating induction of apoptosis. EGCG also induced a down-regulation of expression
of stem cell-related genes and genes that are associated with an aggressive clinical character of the tumor, such as
cd133 and abcg2.

Conclusions: EGCG shows various anti-cancer effects in BTC cell lines and might therefore be a potential anticancer
drug for future studies in BTC. Additionally, EGCG displays a synergistic cytotoxic effect with cisplatin in most tested
BTC cell lines.
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Background
Biliary tract cancer (BTC) develops at different locations
within the biliary tree system. The prognosis for BTC re-
mains very poor with a five year survival rate of only
10 % [1]. Due to the silent clinical character of the ma-
lignancy, BTC patients are often diagnosed at late stages
and only few patients are candidates for surgical resec-
tion – the currently only curative treatment option. Pal-
liative chemotherapeutic therapy with cisplatin and
gemcitabine achieves an average survival of about one
year [1, 2]. In general, high recurrence rates, the lack of
suitable follow-up therapies and fast development of
chemoresistance impede significant therapeutic success
[3]. Therefore, new therapeutic approaches that inhibit
BTC tumorigenesis and that may also overcome or even
reverse the chemoresistance of BTC cells are needed.
Green tea is a very popular beverage that had its origin

in China several thousand years ago. Numerous studies
prove that green tea consumption has cancer-preventive
effects (reviewed in [4]). Green tea contains several cate-
chins of which epigallocatechin gallate (EGCG) is the
most abundant that furthermore shows the strongest
anti-cancer effects [5, 6]. Previous studies demonstrated
that EGCG inhibited growth of cancer cells by causing
apoptosis and cell cycle arrest in various types of cancer,
such as lung cancer [7], prostate cancer [8–10], head
and neck squamous carcinoma [11], hepatocellular car-
cinoma [12] as well as breast, colon, skin and bladder
cancer [4] in vitro and in vivo. There is also evidence
that EGCG has anti-cancer effects in BTC: two studies
demonstrated that EGCG suppresses the growth and inva-
sion potential of various human BTC cell lines [13, 14].
Lang et al. showed that treatment with EGCG sensitized
BTC cells to apoptosis caused by chemotherapeutics
gemcitabine, mitomycin C or 5-fluorouracil. Additionally,
EGCG reduced BTC tumor growth and increased sensitiv-
ity to gemcitabine in vivo. They also demonstrated, that
combined EGCG and gemcitabine incubation was associ-
ated with a synergistic cytotoxic effect [15]. This potential
synergistic effect of EGCG with other chemotherapeutic
compounds was also seen for the combination with vori-
nostat, a histone deacatylase inhibitor, in human HuCC-
T1 cholangiocarcinoma cells [16]. These studies make
EGCG not only an interesting substance for single, but
also a potentially attractive adjuvant substance for com-
bined therapy of BTC in vitro and in vivo [5].
Based on these encouraging preliminary results and a

paucity of data about a potential synergism of EGCG
and cisplatin in BTC cells, we hypothesized that com-
bined treatment of EGCG with cisplatin shows a syner-
gistic cytotoxic effect. For this purpose, we used a
comprehensive approach by testing combined EGCG
and cisplatin treatment in a panel of eight different BTC
cell lines. Since previous studies suggest that EGCG

exhibits diverse anti-cancer effects, we explored the
EGCG-caused changes in cell-cycle distribution, caspase
activity and gene expression of selected cell cycle- and
apoptosis-related genes as well as genes that are associ-
ated with an aggressive tumor character and potential
cancer stem cell (CSC) status.

Methods
Substances and cell culture
EGCG was obtained from Sigma Aldrich (Vienna,
Austria) and dissolved in H2O to a stock concentration
of 10 mM and stored in aliquots at -20 °C. Cisplatin was
provided by the hospital’s pharmacy (Landesapotheke,
Salzburger Landeskliniken) as a stock solution of
3.33 mM and was stored at 4 °C. Resazurin was pur-
chased from Sigma Aldrich and dissolved in Dulbecco’s
Phosphate Buffered Saline (DPBS, Sigma Aldrich). Over-
all five bile duct carcinoma cell lines CCSW-1 (G2 [17]),
BDC (G4 [18]), EGI-1 (G3, [19]), SkChA-1 (G3, [20]),
TFK-1 (G2, [21]) and three gallbladder cancer cell lines
MzChA-1 (G1 [20]), MzChA-2 (G2 [20]) and GBC (G1
[22]) were cultured in high glucose Dulbecco’s modified
Eagle’s medium (DMEM; Gibco, Life Technologies) sup-
plemented with 10 % (v/v) foetal bovine serum (FBS;
Gibco, Life Technologies) as described before [23, 24]
and are together termed as BTC cell lines [25]. For seed-
ing we used the following cell numbers per cm2 of the
culture receptacle in 10 % FBS DMEM: 3.95*104 (BDC,
MzChA-2), 4.74*104 (CCSW-1, GBC), 5.53*104 (SkChA-1),
6.32*104 (EGI-1, TFK-1), and 7.11*104 (MzChA-1). For
EGCG, cisplatin and combined drug treatment we used
serum-free DMEM (sfDMEM) to avoid possible interac-
tions of the drugs with components of the serum.

Drug cytotoxicity
We investigated the cell line- and dose-dependent cyto-
toxic effect of EGCG only and combined EGCG cisplatin
treatment on cells grown in 96-well microplates. Quanti-
fication of cell viability was carried out using the resa-
zurin assay and an Infinite M200 microplate reader
(Tecan, Groedig, Austria) as described [24, 26]. Cells
were treated with a dilution series of EGCG (0.2-
400 μM) in sfDMEM for 72 h based on previously
published concentration ranges [14–16]. Viability was
related to untreated cells (sfDMEM only) samples. For
combined EGCG and cisplatin treatment, cells were
incubated in sfDMEM for 72 h with various concen-
trations of each drug alone (EGCG: 5, 20, 50 and
80 μM; cisplatin: 10, 20, 40 and 80 μM; data only
shown for 20 μM EGCG, 50 μM EGCG and 40 μM
cisplatin, respectively) and two combinations (20 μM
EGCG + 40 μM cisplatin; 50 μM EGCG + 40 μM cis-
platin). For drug combination experiments, cells were
simultaneously incubated with sfDMEM containing
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either single or combined drugs. Viability was mea-
sured using the resazurin assay and an Infinite M200
microplate reader (Tecan) and viability was related to
untreated cells (sfDMEM only) samples. To evaluate
potential synergistic cytotoxic effects of combined
EGCG and cisplatin treatment, we calculated the com-
bination index (CI) using the CompuSyn software
(www.combosyn.com). As described by Chou [27],
combinations that lead to a CI greater than 1.1 are
termed as antagonistic, combinations that lead to a CI
less than 0.9 are termed as synergistic and combina-
tions that lead to a CI between 0.9 and 1.1 are termed
as additive.

Gene expression analysis
TFK-1 cells were treated with 50 μM EGCG in sfDMEM
in 60 mm cell culture dishes for 24 h. Total RNA was
isolated using the RNeasy Kit and QIAshredder tubes
(Qiagen). cDNA synthesis was done with the ImProm-
II™ Reverse Transcription System (Promega). Quantifica-
tion of gene expression was performed by quantitative
real time reverse transcription PCR (qRT-PCR) using the
GoTaq qPCR Master Mix (Promega) and a ViiA7 real
time PCR system (Applied Biosystems, Life Technolo-
gies). All samples were measured at least in biological
triplicates. Melting curve analysis was performed for
each sample and primer pair to verify specificity of PCR
products. Samples were normalized to beta-actin and
treated samples were normalized to untreated controls
according to the ΔΔCt method [28]. Down-regulated
genes (ΔΔCt < 1) are represented as –(1/fold change) for
a more clear visualization.

Caspase
TFK-1 cells were seeded in 96-well microplates and in-
cubated with 50 μM EGCG in sfDMEM for 24, 48 and
72 h, respectively. Apoptosis analysis was performed
using the Caspase-Glo® 3/7 Assay (Promega) according to
the manufacturer’s protocol with an Infinite M200 micro-
plate reader (Tecan). For each time point, caspase activity
was related to a corresponding untreated (sfDMEM only)
control. Microscopic pictures were taken with an inverted
phase contrast microscope (Motic AE31) which was
equipped with a CCD-1300B digital camera (Allied Vision
Technologies/VDS Vosskühler, Stadtroda, Germany) con-
trolled by LUCIA imaging software (Laboratory Imaging
Systems, Prague, Czech Republic).

Cell cycle analysis
For cell cycle analysis, TFK-1 cells were seeded in
30 mm cell culture dishes for 72 h in sfDMEM medium
containing 50 μM EGCG. After 72 h cells were har-
vested with 1x Trypsin-EDTA (0.5 %; Gibco, Life Tech-
nologies) and resuspended in 100 μL DBPS. Cells were

fixed by addition of 1 ml 75 % ice-cold EtOH and incu-
bated for 15 min on ice. After centrifugation, cells were
resuspended in 200 μL DBPS containing 0.04 mg/ml
propidium iodide (Sigma Aldrich, Fluka) and 0.1 mg/ml
RNase (Ribonuclease A from bovine pancreas, Sigma
Aldrich) and incubated for 30 min at 37 °C protected
from light. After addition of 500 μl DPBS, cell cycle ana-
lysis was carried out on a Quanta SC flow cytometer
(Beckman Coulter, Krefeld, Germany). For data analysis
FlowJo software was used (Ashland, Oregon, USA) [29].

Statistics
All data points represent mean values of at least three
biological replicates ± SEM. Paired student’s t-test was used
for calculation of significance between groups. All calcula-
tions were performed using OriginPro 9.1 (OriginLab,
Northampton, MA, USA). Statistical results were consid-
ered significant (*) or highly significant (**) at p < 0.05 and
p < 0.01, respectively.

Results
EGCG reduces cell viability in eight BTC cell lines
Treatment of eight BTC cell lines with different concen-
trations of EGCG (range: 0.2-400 μM) for 72 h signifi-
cantly reduced the cell viability in all cell lines in a dose-
and cell line-dependent manner (Fig. 1). Interestingly,
for all cell lines, except for GBC, cell viability noticeably
declined for EGCG concentrations between 12.5 and
25 μM (for GBC between 50 and 100 μM). Treatment
with the highest concentration of EGCG (400 μM) re-
duced the cell viability to almost 0 % for six cell lines
(CCSW-1, EGI-1, GBC, MzChA-1, MzChA-2 and TFK-1)
whereas for BDC and SkChA-1, a certain percentage of

Fig. 1 Cell line- and dose-dependent effect of EGCG on cell viability
of BTC cell lines. Dose-dependent effect of 72 h EGCG treatment on
eight BTC cell lines related to untreated control. Asterisks indicate
significant (*, p < 0.05) or highly significant (**, p < 0.01) differences
in viability related to untreated control cells. Abbreviations: BTC: Biliary
tract cancer, EGCG: Epigallocatechin gallate, h: hours
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cells (approximately 30 % for BDC and 10 % for SkChA-1,
respectively) survived (Fig. 1).

Synergistic effect of EGCG and cisplatin treatment
To assess a potential synergistic effect, we measured the
cell viability for single and combined treatments and cal-
culated the combination index (CI). Combined EGCG
and cisplatin treatment caused an antagonistic effect in
two cell lines (CCSW-1 and EGI-1) for both tested com-
binations. For one cell line (SkChA-1) the data points
achieved by single treatments were not suitable for CI
calculation. The remaining five BTC cell lines showed a
clear synergistic effect (BDC, GBC, MzChA-2, TFK-1; CI
range 0.38 to 0.66) or a moderate synergistic effect
(MzChA-1; CI range 0.83 to 0.85), respectively, for
combined EGCG and cisplatin treatment (Fig. 2). Inter-
estingly, the categorization (synergistic versus antagonis-
tic)of the CI remained the same for both combinations
(20 μM EGCG and 40 μM Cis; 50 μM EGCG and
40 μM Cis) for all cell lines with a synergistic and antag-
onistic CI, respectively.

Caspase activity
Previous studies showed that EGCG causes apoptosis in
cancer cells [30]. Treatment of TFK-1 cells with 50 μM
EGCG caused a steady increase of caspase activity after
24 h and 48 h, respectively, whereas after 72 h caspase
activity was reduced to its original value (Fig. 3a). This
suggests that EGCG is able to slightly induce apoptosis
in TFK-1 cells.

Cell cycle distribution
To confirm the increase in apoptosis we performed cell-
cycle analysis of TFK-1 cells. EGCG treatment increased
the percentage of cells in sub-G1 (from 8.4 % to 19.2 %),

again indicating apoptosis. Additionally, we observed a
decrease of cells in G2/M (from 33.3 % to 19.4 %). The
overall percentage of cells in G0/G1 and S-phases
remained unchanged (Fig. 3b).

Gene expression
In a last step we investigated the effect of EGCG treat-
ment on the expression of cell cycle- (ccna2, ccnb1,
ccnd1, ccne1, e2f1) and apoptosis-related genes (dr5,
p21), genes that play a role in a potential CSC phenotype
(cd24, cd133) and multidrug resistance (abcg2), as well
as genes that are related to general enhanced aggressive-
ness of BTC (eed, ezh2, suz12): EGCG reduced the ex-
pression of ccna2, ccnb1, ccnd1 and e2f1, but not of
ccne1 in TFK-1 cells. This was accompanied by an en-
hanced level of dr5 and p21 gene expressions. In
addition, we saw a reduction of mRNA levels of cd24
and cd133 as well as of abcg2 and e2f. Interestingly, we
also observed a decline of the expression of the three
core components of the polycomb repressive complex 2
(PRC2, a major epigenetic regulator) eed, ezh2 and
suz12 to different extent (Fig. 4).

Discussion
In our study we investigated the effect of EGCG treat-
ment alone and in combination with the standard che-
motherapeutic cisplatin on the viability of eight different
BTC cell lines. Furthermore we studied the effects of
EGCG on caspase activity, cell cycle and gene expression
of genes related to different aspects of BTC tumorigen-
esis in the established BTC cell line TFK-1 [21].
Incubation with EGCG led to a significant reduction

of cell viability in all eight BTC cell lines. The effect was
concentration-dependent in most cell lines. At the high-
est concentration of 400 μM, for six cell lines (CCSW-1,

Fig. 2 Combined EGCG and cisplatin treatment in BTC cell lines. Potential synergistic cytotoxic effects of combined EGCG and cisplatin treatment
were evaluated in eight BTC cell lines. Cell viability is represented relative to untreated control. For SkChA-1 cells, values from single treatments
were suitable for CI calculation. Single treatments, as well as drug combinations are indicated as “+”. Based on [27], the CI was calculated: a CI less
than 0.9 represents a synergistic, a CI greater than 1.1 an antagonistic and a CI between 0.9 and 1.1 an additive effect. CI values are shown within
the bars of the drug combinations. Abbreviations: BTC: Biliary tract cancer, CI: combination index, EGCG: Epigallocatechin gallate
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EGI-1, GBC, MzChA-1, MzChA-2 and TFK-1) almost
no vital cells were measurable, whereas for BDC and
SkChA-1 a certain amount of cells survived, indicating
different responsiveness to EGCG treatment. These find-
ings are in line with a study carried out by Takada and
colleagues, which showed that EGCG inhibited cell
growth in a dose-dependent manner in three BTC cell
lines (TGBC-2, SkChA-1 and NOZC-1) [13]. Further-
more, Lang et al. presented that EGCG not only reduced
in vivo growth of MzChA-1 cells in a mouse model, but
also that EGCG had no cytotoxic effect on non-
malignant human cholangiocytes [15].
It is also known from previous studies that EGCG ex-

hibits synergistic effects with other anticancer com-
pounds [8, 31–34]. As for BTC, studies showed that
EGCG was able to increase toxicity of the histone deace-
tylase inhibitor vorinostat [16] and the chemotherapeu-
tics gemcitabine, mitomycin and 5-fluorouracil [15],
respectively. Since, to our knowledge, no published data
describe the combination of EGCG and the standard
chemotherapeutic cisplatin in BTC cells, we asked the
question if this combination acts synergistically. To dis-
tinguish additive from real synergistic cytotoxic effects
of combined EGCG and cisplatin treatment we used the
CI based on the study by Chou [27]. For five cell lines
(BDC, GBC, MzChA-1, MzChA-2 and TFK-1) we saw a
synergistic effect, whereas for two cell lines (CCSW-1
and EGI-1) we obtained an antagonistic effect of com-
bined EGCG and cisplatin treatment (for SkChA-1 the
measured values for single treatments were not suitable
for CI calculation). These data indicate that the cytotoxic
effect of EGCG and cisplatin co-treatment is highly cell-
line dependent and can lead to either synergistic or an-
tagonistic effects. Similar results were also observed in

Fig. 3 Effect of EGCG on caspase activity and cell cycle in TFK-1 cells. a Time-dependent effect of 50 μM EGCG on caspase activity in TFK-1 cells.
For each time point, values are related to untreated control. b Cell cycle distribution of TFK-1 cells after 72 h. Sub-G1 represents cells with a DNA
content less than 2 N, G0/G1 cells with DNA content 2 N, S cells with DNA content greater than 2 N and G2/M cells with DNA content 4 N.
c Representative microscopic pictures of EGCG-treated and untreated TFK-1 cells, showing cell shrinkage, rounding and apoptotic bodies, respectively.
Abbreviations: EGCG: Epigallocatechin gallate

Fig. 4 Effect of EGCG on gene expression in TFK-1 cells. TFK-1 cells
were treated with 50 μM EGCG for 24 h. All samples were normalized
to beta-actin and mRNA levels are presented relative to untreated
controls according to the ΔΔCt method [28]. Asterisks indicate
significant (p < 0.05) differences. Abbreviations: abcg2: ATP-binding
cassette, sub-family G, member 2; ccna2: cyclin A2; ccnb1: cyclin
B1; ccnd1: cyclin D1; ccne1: cyclin E1; cd133: prominin 1; cd24:
CD24 molecule; dr5: tumor necrosis factor receptor superfamily,
member 10b; e2f1: E2F transcription factor 1; eed: embryonic ectoderm
development; EGCG: Epigallocatechin gallate; ezh2: enhancer of zeste
homolog 2; h: hours, p21: Cyclin-Dependent Kinase Inhibitor 1A; suz12:
SUZ12 polycomb repressive complex 2 subunit
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non-small cell lung cancer cell lines where the efficacy of
cisplatin was enhanced by EGCG in one cell line, but an-
tagonized in another cell line [31]. One suggested mech-
anism that may lead to a synergistic effect of EGCG and
cisplatin co-treatment is that EGCG sensitizes (cisplatin-
resistant) cancer cells to cisplatin treatment [7, 32]. Che-
moresistant cells often over-express multidrug-resistance
genes, such as abcg2, an ATP-binding cassette subfamily
G2 member, that also might play a role in CSC [35]. Lee
et al. showed that in head and neck squamous carcinoma,
EGCG enhanced cisplatin efficacy by down-regulation of
abcg2 [11]. In line with these results, EGCG reduced
abcg2 mRNA expression in TFK-1 cells in the present
study, which may explain the observed synergistic cyto-
toxic effect of combined EGCG and cisplatin treatment.
The cytotoxic effect of EGCG has in part been as-

cribed to cell cycle arrest [4, 9]. In our study, EGCG
caused down-regulation of cell cycle-promoting genes
ccna2, ccnb1, ccnd1 and e2f1, whereas the expression of
the cell cycle inhibitor p21 and the apoptosis-related
gene dr5 were up-regulated. These effects on mRNA ex-
pression were accompanied by a moderate increase of
caspase activity, as well as an increase in sub-G1 popula-
tion (indicating apoptosis) and a decrease in G2/M (indi-
cating cell cycle arrest), respectively. One potential
underlying mechanism might be the down-regulation of
ccnd1 in the early phases of the cell cycle, inhibiting
e2f1 to attain its active form, which in turn prevents the
activation of ccna2, leading to cell cycle arrest and apop-
tosis. Another hypothesis could base on up-regulation of
p21 which also inhibits ccna2 activation, again leading to
cell cycle arrest and apoptosis [36]. Interestingly, we did
not recognize an increase of p53 mRNA levels (data not
shown), which suggests that the potential p21-mediated
effect on the cell cycle may be independent of p53 or
that the effect is executed by p21 rather than p53 as
already shown in another study [9].
EGCG also slightly reduced mRNA levels of the two

stem cell-related genes cd24 and cd133, known to be as-
sociated with enhanced aggressiveness, higher tumori-
genic potential and stem cell status in BTC [37–39]. We
also recognized that EGCG down-regulated the three
core components of the PRC2 complex (eed, ezh2 and
suz12), which is a major epigenetic regulator that per-
forms trimethylation of histone 3 at lysine 27. Ezh2 is the
enzymatically active molecule of this complex and was
found to be over-expressed in BTC specimen and con-
nected to poor clinical features as recently reviewed [40].
Interestingly, EGCG treatment had the strongest effect on
ezh2 expression in the present study. This goes in line
with the results presented by Choudhury and colleagues,
who showed that EGCG alone and in combination with
the PRC2 inhibitor 3-Deazaneplanocin A effectively re-
duced PRC2 activity in skin cancer cells [41].

Conclusions
EGCG is a potent drug for treatment of BTC in vitro.
EGCG significantly reduced cell viability of all eight
BTC cell lines and for most cell lines a synergistic cyto-
toxic effect could be shown, when combined with the
standard chemotherapeutic drug cisplatin. Additionally,
EGCG showed a profound effect on the cell cycle, which
changes were confirmed indirectly by down-regulation
of various cell cycle-dependent genes, enhanced caspase
activity and cell cycle arrest. Furthermore, EGCG might
also have an effect on cancer stem cell properties. All
these results suggest that EGCG may be a promising
and versatile (adjuvant) drug for future in vivo experi-
ments concerning BTC. Several completed or currently
active and recruiting clinical phase I or II trials (n > 20)
include EGCG as a chemopreventive or supportive drug
in various tumor entities (www.clinicaltrials.gov). There-
fore, future clinical studies need to fully evaluate the po-
tential of the green tea constituent EGCG as an adjuvant
or chemopreventive drug for BTC.
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