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Curcumin: the spicy modulator of breast
carcinogenesis
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Abstract

Worldwide breast cancer is the most common cancer in women. For many years clinicians and the researchers are
examining and exploring various therapeutic modalities for breast cancer. Yet the disease has remained
unconquered and the quest for cure is still going on. Present-day strategy of breast cancer therapy and prevention
is either combination of a number of drugs or a drug that modulates multiple targets. In this regard natural
products are now becoming significant options. Curcumin exemplifies a promising natural anticancer agent for this
purpose. This review primarily underscores the modulatory effect of curcumin on the cancer hallmarks. The focus is
its anticancer effect in the complex pathways of breast carcinogenesis. Curcumin modulates breast carcinogenesis
through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis. Largely
the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT are the key signaling pathways involved. The review also highlights
the curcumin mediated modulation of tumor microenvironment, cancer immunity, breast cancer stem cells and
cancer related miRNAs. Using curcumin as a therapeutic and preventive agent in breast cancer is perplexed by its
diverse biological activity, much of which remains inexplicable. The information reviewed here should point toward
potential scope of future curcumin research in breast cancer.
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Background
Breast cancer is the second most common cancer in the
world accounting for 25% (approximately 1.67 million)
of all new cancer cases diagnosed in 2012 [1]. It is the
commonest cancer among women and levels as the fifth
cause of death from cancer overall [2]. Although stand-
ard clinical practice requires screening and surveillance
in the early detection of breast cancers, adherence to these
guidelines is still low. Breast cancer thus far remains a
lethal disease. For many years clinicians and researchers
are examining and exploring various therapeutic modal-
ities for breast cancer. Yet the disease has remained
unconquered and the quest for cure is still going on.
Cancer in breast commences in the terminal duct lobular

unit (Fig. 1) and progresses in a stepwise manner [3]. It is a
heterogeneous disease sustained by interconnected and
intricate signaling pathways [4]. Diverse genetic and epi-
genetic alterations are crucial to this carcinogenesis [5, 6].
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Thus aiming a single gene product or cell signaling pathway
is unlikely to prevent or treat breast cancer. The current
therapeutic options for breast cancer (surgical resection, ra-
diation, and chemotherapeutic agents) [7–12] are not only
costly but also modify many normal gene functions.
Present-day strategy of breast cancer therapy and preven-
tion is either combination of a number of drugs or a drug
that modulates multiple targets. Nonetheless, it is still
unknown how many cancer targets are there. Again how
many targets must be confronted to control cancer growth
is yet to be explored. In this regard natural products are
now becoming significant option in breast cancer preven-
tion and treatment. The well-known uses of these in cancer
treatment are due to their effectiveness, less side effect,
relatively low cost and notably their ability to target various
signalling pathways. Thus they are the primary investigative
molecules hovering hope of discovering new powerful
classes of anticancer agents for breast cancer. One of the
most noteworthy of these natural compounds is curcumin
(diferuloylmethane). In the mid-eighties earliest investiga-
tions on the effect of curcumin revealed that it can be a po-
tential anticancer agent [13, 14]. Subsequently researchers
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13046-017-0566-5&domain=pdf
mailto:hayatikb@usm.my
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Fig. 1 Schematic of segment of breast lobe showing the lobules and the duct system. The morphofunctional unit of breast is terminal duct
lobular unit (TDLU). TDLU is a grapelike cluster of small alveoli that comprises lobule and terminal duct. The terminal ducts drains in to the
subsegmental and segmental duct which drains into the lactiferous duct and collecting duct
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have been paying their attention to this unique com-
pound. Cell type specific effects of curcumin are re-
markable in selected cancers and only continued
research can allow a better understanding of cell
signaling pathways targeted by it.
Hallmarks of cancer encompass eight biological cap-

abilities (sustaining proliferative signaling, escaping
growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis, triggering invasion and
metastasis, reprogramming of energy metabolism and evad-
ing immune destruction) acquired during cancer develop-
ment [15]. Determining ways to suppress the transformed
phenotypes can aid in advancement of new anticancer
approach. The present review primarily focuses on the
modulatory effect of curcumin on the cancer hallmarks and
describes how the regulations can be applied practically in
different anticancer approaches against this deadly disease.
We also analyze the known impact of curcumin on micro-
RNA and breast cancer stem cell (bCSC), two somewhat
new areas of profound concern in cancer research.

What is curcumin and how it works?
Curcumin is a constituent of turmeric, the bright yellow
spice, derived from the roots of plant Curcuma longa
[3]. Turmeric is easily available, cheap and has a pro-
tracted history of being used as homemade remedies for
different ailments. Chief component of the root is a
volatile oil, containing turmerone. Curcuminoids are the
coloring agents of turmeric. Curcuminoids consist of
curcumin, demethoxycurcumin, 5′-methoxycurcumin,
and dihydrocurcumin [3]. Curcumin (1,7-bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione), is a hydro-
phobic polyphenol (Fig. 2) [16]. It interacts with arsenals
of molecules including inflammatory mediators, growth
factors, enzymes, carrier proteins, metal ions, tumor sup-
pressors, transcription factors, oncoproteins and cellular
nucleic acids [17]. The interaction can be either indirectly
or directly through covalent, non-covalent hydrophobic,
and hydrogen bonding [18]. Its chemical structure with its
different binding capacity is vital to its ability to interact
with diverse targets. The reduced solubility and as a result
lessened bioavailability is a recognized problem in the
efficacy of curcumin. Solvents like dimethyl sulphoxide
(DMSO), ethanol and sodium hydroxide are commonly
used for dissolving curcumin. However studies showed
that its solubility in water was significantly augmented
with the application of heat [19, 20].
The therapeutic properties of curcumin include anti-

oxidant, antiarthritic, antiamyloid, anti-ischemic, and
anti-inflammatory effect [21–23]. It has been shown to
have protective and therapeutic efficacy against cancers
of the skin, oral cavity, lung, pancreas, and intestinal
tract, and to suppress tumor angiogenesis and metastasis
[24–32]. Ever since the recognition of potential effect of
curcumin on different cancer cells, different molecular
studies have clarified its underlying mechanisms of
actions in tumor cells. The multimodal targeting cap-
acity of curcumin underlies its substantial therapeutic
potential against cancer. Today we know that it exerts
its anticancer effect by modulating different steps of
multistep molecular carcinogenesis [33–36] (Fig. 3). This
review will primarily focus and highlight how curcumin
affects the cancer hallmarks.

Curcumin and its growth inhibitory effect
The growth inhibitory effect of curcumin on breast cancer
has been studied on different cancer models (Table 1). It
impedes the growth of various cancer cells, without



Fig. 2 The source and chemistry of curcumin. a Turmeric powder is obtained from the roots of plant Curcuma longa. b Curcumin is a
component of turmeric. c The chemical structure of curcumin demonstrates a bis a, b-unsaturated diketone structure that displays keto enol
tautomerism, with a predominant keto form in acidic and neutral solutions and a stable enol form in alkaline media. d The chemical structure of
demethoxycurcumin and bisdemethoxycurcumin
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producing any toxicity to normal cells. Modulation of
multiple cell signaling pathways that are linked with cell
proliferation, cell cycle regulation, cellular senescence and
apoptosis contribute in the process (Fig. 4).

Modulation of cell proliferation and regulation of cell cycle
The growth and proliferation of cell is regulated by vari-
ous interactions between the different molecules of cell
cycle [37]. Multiple protein kinases control the major
checkpoints in cell cycle and cyclin-dependent kinases
(CDKs) and cyclins drive the cell through the cycle [38].
The expression of cyclins and CDKs are often aberrant
in cancer cells and if these can be inhibited their tran-
scription can be blocked and cell death can be induced.
Thus currently the CDKs and cyclins are rational targets
for cancer therapy [39]. Again constitutive activation of
many signal transduction pathways also stimulate cancer
cell growth. Besides there is crosstalk between these pro-
liferative signaling pathways and the cell cycle regulators.
In breast cancer curcumin inhibits cell proliferation by

down-regulating the transcription of nuclear factor kappa
B (NF-κB), cyclin D and matrix metalloproteinase-1
(MMP-1) [40]. Curcumin can lead to cell cycle arrest both
in G2/S and G2/M phase in different breast cancer cell
lines, including the antiestrogen resistant ones [41, 42]. In
CUR-treated cells the ERK (extracellular signal-regulated
kinases)1/ERK2 mitogen-activated protein (MAP) kinases
activity was down-regulated [43] and in combination with
mitomycin C (MMC) there was enhanced G1 arrest with
resultant inhibition of cancer cell proliferation and cycle
progression in vitro and in vivo via the p38-MAPK path-
way [44]. The antiproliferative effect of curcumin can also
take place by means of AMPK(AMP-activated protein
kinase) alpha-COX-2 pathway [45].
It is documented that abnormal activation of Wnt

(Wingless-Int)/β-catenin signaling pathway and subse-
quent upregulation of β-catenin driven downstream
targets c-MYC (Myelocytomatosis oncogene), and cyclin
D1 is linked to breast carcinogenesis [46, 47]. Interest-
ingly curcumin was found to inhibit the expression of
various components of Wnt/β-catenin pathway includ-
ing cyclinD1 in breast cancer cell line [48]. Again it is to
be noted that curcumin’s growth suppressive action on
estrogen receptor (ER) positive breast cancer cell is me-
diated through an ER related pathway and may interfere
with 17- β estradiol at the receptor level [49].
Flap endonuclease 1 (FEN1) represents a potent,

broadly-applicable potential target for anticancer thera-
peutic development [50]. It is a DNA repair-specific
nuclease and over-expression of FEN1 is involved in
breast cancer development [50]. Curcumin may inhibit
breast cancer cell proliferation through the transcription



Fig. 3 Curcumin targets the different phases of carcinogenesis pathway. Curcumin affects the different phases of multistep molecular
carcinogenesis. It modulates the cellular and molecular hallmarks of cancer and exerts its effects by affecting DNA mutations and
epigenetic aberrations
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factor Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
mediated down-regulation of Fen1 expression [51].

Induction of apoptosis
Apoptosis is a highly regulated mechanism by which
cells undergo cell death. Inducing apoptosis in malignant
cells without damaging normal cells is an effective but
challenging anticancer approach. Curcumin has strong
effect on both intrinsic and extrinsic pathways of
apoptosis [52]. In breast cancer curcumin mediated
apoptosis can take place through both p53 dependant
and independent pathways.
Curcumin induced apoptosis in breast cancer cell is

dose- and time-dependent and is regulated by multiple
signaling pathways [43, 53, 54]. With curcumin treatment
tumor-free survival was prolonged and tumor multiplicity
was reduced in BALB-neuT mice [43]. It induced apoptosis
via a p53-dependent pathway where Bax is the downstream
effector [55, 56]. Curcumin alone or in combination with
arabinogalactan promoted apoptosis by raising the ROS
level, altering mitochondrial membrane and reducing
glutathione [56]. Curcumin mediated induction of apop-
tosis by depletion of reduced glutathione has not been
observed in breast cancer. It not only decreases the viabil-
ity of murine mammary gland adenocarcinoma cell line by
inhibiting Bcl-2 (B-cell lymphoma 2) and activating
caspase-3, it increases mitochondrial Ca2+ and reactive
oxygen species (ROS) production that act synergistically to
produce the mitochondrial permeability transition and cell
death [57]. It also induced apoptosis in breast cancer cells
through up-regulating p21 expression [58]. Curcumin
and citral combination treatment led to G0/G1 arrest
in cell cycle. There was high levels of ROS generation
only in breast cancer cells, which deactivated anti-
apoptotic proteins like phosphorylated p53 and phos-
phorylated Bad and led to activation of apoptosis [59].
In combination with trichostin curcumin induces p53
independent apoptosis via c-Jun-N-terminal kinase
(JNK) activation [60]. With berberine, curcumin in-
duced caspase-dependent apoptosis in breast cancer
cells via ERK (Extracellular Signal-regulated Kinase)
pathways. Autophagic cell death was prompted through
JNK (Jun N-terminal Kinase)/Bcl-2/Beclin1 pathway by
this co-treatment [61]. Apoptosis is also induced in the
breast cancer cells by curcumin mediated inhibition of
intracellular fatty acid synthase expression [62].
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Fig. 4 Targets in the curcumin mediated inhibition of breast tumor growth. Curcumin inhibits growth of breast cancer through inhibiting cancer
cell proliferation, promoting apoptosis and inducing senescence by means of targeting multiple cell signaling pathways and transcription factors.
NFκB: nuclear factor kappa B, MAPK: Mitogen-activated protein kinases, Wnt/β-catenin: Wingless-Int/beta-catenin, IGFR: Insulin like growth factor
receptor, IGF1: Insulin like growth factor1, mTOR: mammalian target of rapamycin, ROS: reactive oxygen species, dsDNA: double stranded DNA,
STAT3: Signal transducer and activator of transcription3, Nrf2: Nuclear factor (erythroid-derived 2)-like 2, hTERT: human telomerase
reverse transcriptase
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Notch gene family encodes evolutionarily conserved
cell surface receptor. Overexpression of these receptors
has been associated in breast cancer where Notch1 can
be a transcriptional target of mutant p53 [63, 64]. Apop-
tosis in breast cancer cells can occur with abrogation of
aberrant Notch1 signaling [64]. Treatment with curcu-
min resulted in downregulation of Notch1 and its down-
stream target, Hes1 due to the decreased activity of
endogenous mutant p53 [65].
The tumor necrosis factor (TNF)- related-apoptosis-

inducing ligand (TRAIL) is a potential anticancer agent,
Once bound to the receptor, it leads to apoptosis by activat-
ing caspase-8 and downstream executioner caspases [66].
To normal cells TRAIL is pretty nontoxic. But it selectively
fuels apoptosis in many transformed cells. Resistance is a
major hurdle to the extensive use of TRAIL-based mono-
therapies. Curcumin enhances TRAIL-induced apoptosis in
breast cancer cells by regulating apoptosis-related proteins
[67]. BRCA1 dysfunction is linked to triple negative breast
cancer (TNBC) [68]. In TNBC cell lines curcumin induces
double-strand breaks in DNA and increases expression as
well as phosphorylation of DNA repair protein BRCA1.
With cytoplasmic retention of BRCA1, DNA repair is ham-
pered and cells undergo apoptosis [68]. Insulin like growth
factors (IGFs) act as strong mitogens for a variety of cancer
cells. The IGF-1 system has been implicated to play a crit-
ical role in breast carcinogenesis. This system comprises
IGFs (IGF-1 and IGF-2), IGF-1 receptor (IGF-1R) and IGF
binding proteins [69]. Curcumin suppresses IGF-1R gene
expression at transcriptional level, down-regulates IGF-1
axis and blunts IGF-1-stimulated breast cancer cell growth
and reverses the IGF-1-induced apoptosis resistance [70].
Curcumin lessens the microtubule instability of breast
cancer cells, activates mitotic checkpoint, delays mitotic
progression from the metaphase to anaphase and thus
induces p53 dependent apoptosis [71].

Induction of senescence
Senescence is irreversible growth arrest. It prevents
aged or abnormal cells from anarchic proliferation and
is considered as a potent tumor-suppressing mechan-
ism [72]. Telomere attrition and activation of tumour
suppressor genes are two important mechanisms of
cellular senescence. Telomere length is maintained by
telomerase and progressive shortening of telomeres
results in cell cycle arrest. In majority of breast cancer
types telomerase is considerably activated [72]. Studies
show that in breast cancer curcumin alone or in com-
bination with silibin can inhibit telomerase expression
[73]. It induces p16INK4A-dependent DNA damage-
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independent senescence without senescence associated
secretory phenotype in breast cancer associated fibroblasts
(bCAFs) [74].

Curcumin and its inhibition of cancer spread and tumor
angiogenesis
For delivering oxygen and nutrients to the growing
tumor, angiogenesis plays a key role. It is also critical for
enabling two important malignant phenotypes: meta-
bolic deregulation and tumor spread. As we know the
degree of aggressive metastasis is an important prognos-
tic factor for patients with breast cancer. Studies also
suggests that metastasis may be an early event in the
carcinogenesis process [75]. Once breast cancer has
spread, treatment options are limited. Since most deaths
from breast cancer occur after the disease has metasta-
sized, inhibiting metastasis in the early phase of carcino-
genesis is a potential therapeutic strategy against this
cancer. Options to interfere with angiogenic signals by
natural compounds with pleiotropic actions can be an
alternative approach to develop a complementary anti-
angiogenesis treatment strategy. Curcumin has effectively
demonstrated its efficiency to act as a potent antian-
giogenic, anti-invasive and anti-metastatic agent
in vitro and in vivo in numerous occasions via modulation
of mainly NF-κB, RhoA (Ras homolog gene family, member
A)/ROCK (Rho-associated, coiled-coil-containing protein
kinase 1)/MMPs and JAK2/STAT (Signal transducer and
activator of transcription) 3 signaling pathway (Table 2).
Through down-regulation of NF-κBp65 expression

and influencing its expression regulated gene products
curcumin repressed tumor growth and microvessel for-
mation in heterotopic breast cancer mouse model and
inhibited migratory activity of cancer cells [58, 76]. It
strongly averts the formation of hematogenous metasta-
ses in vivo through down-regulation of NF-κB/activator
protein-1 (AP-1) dependent MMP expression and direct
apoptotic effects on the circulating cancer cells [77].
Further study revealed that inhibition of NFκB reduced
the expression of prometastatic chemokine (C-X-C
Motif ) ligand (CXCL)1 and −2, which in turn reduces
expression of chemotactic receptor CXCR4 along with
other prometastatic genes [78].
While antiproliferative effects of curcumin are estro-

gen dependent in ER-positive human breast cancer
cells, its anti-invasive effect on ER-negative cells was
estrogen independent [49]. In the ER negative cancer
while reducing the transcript levels of vascular endo-
thelial growth factor (VEGF) and basic fibroblast
growth factor, it downregulated MMP-2 and upregu-
lated tissue inhibitor of metalloproteinase (TIMP-1).
Integrin α6β4 is a laminin adhesion receptor linked to
cancer cell invasion and migration. Akt and NF-κB are
its known downstream effectors. Curcumin inhibits
integrin function and blocks integrin-dependent breast
cancer cell motility and invasion [79].
Maspin (mammary serpin) is a serine protease inhibi-

tor. It can suppress tumor growth and metastasis in vivo
and tumor cell motility and invasion in vitro. It links
with the p53 tumor-suppressor pathway and functions
as angiogenesis inhibitor both in vitro and in vivo [80].
Curcumin has shown to upregulate maspin expression
in breast cancer cells [81]. While progressive loss of
expression of maspin during tumor progression makes it
a noteworthy biomarker, its curcumin mediated re-
expression intervention offers a promising therapeutic
option for breast cancer.
Lysophosphatidic acid (LPA) activates RhoA/ROCK/

MMPs signaling pathway and induces as well as aggra-
vates breast cancer invasion and metastasis. Curcumin
inhibits LPA-induced cancer cell invasion by attenuating
this pathway [82]. Activated cancer-associated fibroblasts
or myofibroblasts facilitate tumor growth. Curcumin
suppressed the procarcinogenic effects of stromal fibro-
blast [74]. It also repressed the 12-O-tetradecanoylphor-
bol-13-acetate (TPA)-induced MMP-9 expression and
subsequent cell invasion [83]. It inhibited metastatic
development via the suppression of urokinase- type plas-
minogen activator through NF-κB signaling pathways
[84]. The association of breast cancer with obesity is
linked to adipokines like visfatin [85, 86]. It was found
that visfatin-Notch1 axis contributes to breast cancer
progression [85]. Curcumin down-regulated the mRNA
and protein levels of visfatin partly by NF-κB dependent
mechanism [87].
When treated with curcumin there was a substantial

low level of expression of pro-angiogenic factors and a
decrease in micro-vessel density in animals compared
with that of vehicle treated tumors [88]. Curcumin re-
vokes osteopontin (OPN) and progestin induced VEGF
expression [89]. OPN upregulates expression of VEGF in
human breast cancer model and pledges the angiogen-
esis [90, 91]. The chemokine-like extracellular matrix-
associated protein OPN is pivotal in controlling breast
cancer progression. Aiming the OPN-regulated signal-
ling pathway by curcumin to turn off the angiogenic
switch could be clinically valuable emergent tactic to the
treatment of the disease.
With epithelial-mesenchymal transition (EMT) cancer

cells attain molecular changes facilitating anomalous
cell-cell adhesive interactions and junctions [92]. The
cells morphologically become more spindle-shaped with
subsequent loss of cell polarity and cell to cell adhesion
[92]. This promotes cancer cell progression and spread.
Once migrated to an appropriate location these cells
upregulate epithelial markers through mesenchymal-
epithelial transition. Subsequently there is activation of
several transcriptional repressors through various vital
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signaling pathways like NF-κB, Wnt and Hedgehog
[93, 94]. Therefore blocking or reversing EMT can be
a promising anticancer strategy for restricting cancer
spread. In breast cancer curcumin disrupts EMT and
corresponding morphological changes with inhibition
of cell motility and invasiveness in vitro [95]. It was
also observed that curcumin decreased the expression
of EMT related genes Slug, AXL and Twist1 in breast
cancer cell lines [96].

Curcumin and its impeding of cancer promoting
inflammation
Chronic inflammation aids growth and spread of cancer
through either direct interactions of inflammatory cells
and cancer cells or indirect effects of inflammatory cells
on other resident stromal cells. The cancer promoting
effects of inflammation are release of growth factors, re-
moval of growth suppressors, and enhanced resistance
to cell death, initiation of angiogenesis, triggering of
invasion and metastasis and evasion of immune destruc-
tion. Targeting the procarcinogenic products of inflam-
mation like free radicals, arachidonic acid metabolites,
NFκB transcription factor, TNF-alpha (TNF-α), CXC
chemokines and AKT can be an important approach to
halt cancer development and progression. Curcumin can
inhibit iNOS (inducible nitric oxide synthase) induction,
scavenge NO radicals in breast organ culture system and
reduce free radical synthesis in the promotion phase of
carcinogenesis [97, 98]. It can also downregulate CXC
chemokines in via the NFκB pathway [78].
Reprogramming of cellular energetic pathways in can-

cer cell is now a well-accepted fact which can be due to
oncogene expression or inflammatory microenvironment
[15, 99]. In cancer cells there is glucose amplified uptake
and glycolysis. A substantial portion of glucose carbon
from the augmented glycolytic catabolism is diverted to
energize the cancer cell proliferation [100]. It was found
that the inflammatory mediator TNF-α is a direct
inducer of aerobic glycolysis and inhibitor of mitochon-
drial biosynthesis in malignant breast epithelial cell lines.
Intriguingly this effect of TNF-α can be reversed by
curcumin [101].

Curcumin mediated modulation of breast cancer stem
cells (bCSCs)
CSCs are tumor initiators and propagators of tumor
growth. CD44 is an important cell surface markers for
bCSCs. It is a downstream target gene of STAT3-NFκB
signaling pathway. The spread of cancer is mediated by
cellular component that displays high CD44 activity and is
associated with an elevated level of microtentacles (McTNs)
[102, 103]. McTNs aid in cell reattachment in the meta-
static cascade. Alone or in combination with epigallocate-
chin gallate, curcumin blocked STAT3 phosphorylation,
weakened the interaction between STAT3 and NFκB in the
nucleus with downregulation of CD44 expression and
resultant reduction in bCSC population [102]. Curcumin
inhibited the bCSC subpopulation also by extinguishing
McTNs [103]. Alone or in combination with piperine it is
able to inhibit breast stem cell self-renewal through possible
inhibition of Wnt signaling [104]. Moreover this combin-
ation downregulated stearoyl-coa desaturase, the regulator
of stemness in breast stem cells [105]. This is clinically
crucial as it can serve as an effective cancer preventing
approach. A decreased expression of E-Cadherin, a trans-
membrane glycoprotein of cell adhesion, is associated with
metastatic potential with poor prognosis in breast cancer.
Breast CSCs are highly migratory cells. In these cells
expression of E-cadherin is suppressed thus EMT is insti-
gated. Curcumin amplifies the E-cadherin/β-catenin nega-
tive feedback loop and restores the expression of E-
cadherin [106]. Hence this phytochemical can block bCSC
migration and impede the EMT.

Curcumin mediated modulation of tumor
microenvironment and cancer immunity
The interplay between antitumor immunity and tumor-
originated proinflammatory activity is thwarted in tumor
microenvironment [15, 107]. Modulation of immune cells
and the inflammatory process in order to manipulate the
tumor microenvironment demonstrate attractive targets
for therapeutic intervention in cancer. Again agents that
can inhibit cancer-stroma crosstalk may augment conven-
tional tumor cell directed therapy. It is recognised that
exosomes secreted from the tumor cells fuses with the T
cell and NK cell to supress their cytotoxicity and thereby
promotes immune tolerance. In breast cancer curcumin
can reverse this repression of NK cell cytotoxicity. In fact
curcumin treatment enhances ubiquitination of exosomal
proteins for degradation [108]. While curcumin has
shown to have suppressive effect on bCAFs further study
is looked-for to explore the effect of curcumin on the
cross talks between cancer cell and stromal cells. Cutting-
edge research should also focus on the immunomodula-
tory effects of this phytochemical on lymphoid cell popu-
lations, and cytokine production. Deeper understanding is
needed as to whether it can be used alone or in combina-
tions with different immunotherapies to therapeutic
advantage.

Curcumin mediated modulation of cancer miRNA
Micro RNAs (miRNAs) are short non-coding RNA, each
of which has the ability to regulate the expression of
numerous genes. This feature allows them to simultan-
eously control multiple cellular signalling pathways.
MiRNAs have been found to be dysregulated in nearly
every types of human cancer including breast cancer
[109, 110]. A slight change in the expression of one can
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generate a signaling cascade that has the potential to
involve many molecular networks triggering various
responses in cancer cell. Hence, miRNAs can be either
targets or effectors. Since curcumin exerts its anticancer
effects by targeting multiple signalling pathways, and
miRNAs regulate diverse biological processes, it is
thought that miRNAs could play a role in regulating re-
sponse towards this natural agent (Fig. 5). This could
lead to development of more effective treatment ap-
proaches. Whereas quite a few studies on various cancer
demonstrated the anticancer effect of curcumin via
modulation of miRNA, at present only few studies
reveal curcumin-mediated miRNA regulation in breast
cancer [109].
Till now in breast cancer largely apoptosis, prolifera-

tion, invasion and metastasis have been found to be
regulated by targeting miRNAs. In MCF-7 cells curcu-
min reduced Bcl-2 expression through upregulation of
miR-15a and miR-16 and prompted cancer cell death
[111]. Yet again when combined with emodin there was
a synergism in its antiproliferative and anti-invasive ef-
fect through up-regulation of miR-34a [112]. As chronic
inflammation promotes bystander cell survival with
genomic injury it is a critical factor in the spread and
growth of cancer. It has been found that curcumin up-
regulates miR181b expression in metastatic breast can-
cer cells and directly binds to the 3′-UTR of CXCL-1
Fig. 5 Postulated aspects of curcumin mediated miRNA based modulation
and -2. Subsequently there is down regulation of these
proinflammatory cytokines. This up-regulation of miR181b
inhibits metastases formation in vivo in immune-deficient
mice [113]. The plastic derived universal chemical Bisphe-
nol A (BPA) is an endocrine disrupter that has a cancer
promoting effect in mammary epithelial cells. BPA mediates
its carcinogenic effect via interference with miR-19 targeted
PTEN/AKT/p53 axis with dysregulation of downstream
proteins PTEN, p-AKT, p-MDM2, p53, and proliferating
cell nuclear antigen. Fascinatingly curcumin restrained the
upregulation of miR-19 and reversed cancer promoting
effect of BPA [114].

Potential clinical implication of curcumin action
Curcumin exemplifies a promising natural anticancer
agent for breast cancer prevention and treatment. All to-
gether the anticancer effect of curcumin mediated
modulation of breast carcinogenesis is primarily through
its impact on NFκB, PI3K/Akt/mTOR, MAPK, JAK2/
STAT3 and Wnt/β-catenin signaling pathways (Fig. 6).
The transcription factor STAT3 is constitutively acti-
vated in a major fraction of breast cancer types espe-
cially the estrogen negative types and TNBC [115].
Curcumin and its analogues have been found to inhibit
cancer cell proliferation, promote apoptosis and sup-
press bCSCs by means of modulating this multifaceted
transcription factor [102, 116, 117]. Curcumin is a good
of breast cancer



Fig. 6 Curcumin mediated modulation of major events in breast carcinogenesis. Curcumin exerts its anticancer effect by modulating cell proliferation
and cell cycle regulation, inducing apoptosis and senescence, inhibiting cancer spread and tumor angiogenesis, impeding tumor promoting
inflammation and modulating bCSCs, tumor microenvironment, cancer immunity and miRNA. bCSC: breast cancer stem cells, miRNA: microRNA,
NFκB: nuclear factor kappa B, MAPK: Mitogen-activated protein kinases, mTOR: mammalian target of rapamycin, FeN1: Flap endonuclease 1, Nrf2:
Nuclear factor (erythroid-derived 2)-like 2, Wnt/β-catenin: Wingless-Int/beta-catenin; IGF1: Insulin like growth factor1, CXCL: Chemokine (C-X-C Motif)
Ligand, McTNs: microtentacles, VEGF: Vascular endothelial growth factor, RhoA: Ras homolog gene family, member A), ROCK: Rho-associated, coiled-
coil-containing protein kinase 1), MMPs: Matrix metalloproteinase-1, bCAFs: breast cancer associated fibroblasts, JAK2/STAT3: Janus kinase 2/Signal
transducer and activator of transcription3
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candidate for NFκB and STAT3 targeting. It may well
represent a novel category of mTOR inhibitor and can
also be an effective therapeutic agent in cancers with
overexpression of integrin α6β4.
Cancers have parenchymal and stromal component.

Majority of the anticancer approach is primarily tar-
geted towards the parenchymal part. However, CAFs
comprise a major portion of the reactive tumor
stroma. Hence efficient cancer therapy should take
into account the presence of these stromal cells, which
actively play a part in tumor growth and spread and
may well be responsible for tumor recurrence. Curcu-
min might constitute an efficient fibroblast-directed
therapeutic approach which may improve the outcome
of classic therapeutic regimens of breast cancer.
To date cytotoxic chemotherapy is the main thera-

peutic choice for TNBCs and with recurrence these can-
cers have no other treatment options. Curcumin-based
treatment strategies may well improve the survival in pa-
tients with sporadic TNBCs. Last but not least, combin-
ing curcumin with chemo-based, hormone-based and
targeted therapies can be a potential approach for the
management of breast cancer.
Conclusion
In breast cancer curcumin impedes tumor growth, ma-
lignant progression and spread. Usage of curcumin as a
therapeutic agent in breast cancer is perplexed by its
diverse biological activity, much of which remains
unexplained. To conclude, along with the research for
the enhancement of solubility and stability of curcumin,
modulation of tumor microenvironment, cancer im-
munity, bCSCs, and cancer related miRNAs by this
agent are important aspects where cutting-edge future
study is looked-for.
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