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Abstract: Obese subjects have an increased risk of developing triple-negative breast cancer (TNBC),
in part associated with the chronic low-grade inflammation state. On the other hand, epidemiological
data indicates that increased consumption of polyphenol-rich fruits and vegetables plays a key role in
reducing incidence of some cancer types. Here, we tested whether green tea-derived epigallocatechin-
3-gallate (EGCG) could alter adipose-derived mesenchymal stem cell differentiation into adipocytes,
and how this impacts the secretome profile and paracrine regulation of the TNBC invasive phenotype.
Here, cell differentiation was performed and conditioned media (CM) from preadipocytes and mature
adipocytes harvested. Human TNBC-derived MDA-MB-231 real-time cell migration was performed
using the exCELLigence system. Differential gene arrays and RT-qPCR were used to assess gene
expression levels. Western blotting was used to assess protein expression and phosphorylation
status levels. In vitro vasculogenic mimicry (VM) was assessed with Matrigel. EGCG was found to
inhibit the induction of key adipogenic biomarkers, including lipoprotein lipase, adiponectin, leptin,
fatty acid synthase, and fatty acid binding protein 4. Increased TNBC-derived MDA-MB-231 cell
chemotaxis and vasculogenic mimicry were observed in response to mature adipocytes secretome,
and this was correlated with increased STAT3 phosphorylation status. This invasive phenotype was
prevented by EGCG, the JAK/STAT inhibitors Tofacitinib and AG490, as well as upon STAT3 gene
silencing. In conclusion, dietary catechin-mediated interventions could, in part through the inhibition
of adipogenesis and modulation of adipocytes secretome profile, prevent the onset of an obesogenic
environment that favors TNBC development.
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1. Introduction

Adipogenesis, as defined by the formation of adipocytes from stem cells [1], and
the adipose tissue itself have drawn much attention at the onset of chronic inflammation
in metabolic diseases, such as type 2 diabetes mellitus, cardiovascular diseases, and in
several types of cancer [2,3]. Among the processes involved in the setting of these diseases,
the adipose tissue secretome has been inferred to play a crucial paracrine regulatory
role in brain cancer [4], prostate cancer [5], bladder cancer [6], breast cancer [7], and
colon cancer [8]. Molecular links between central obesity and breast cancer have also
been inferred to trigger oncogenic signaling pathways, including NFκB, JAK, STAT3, and
AKT [9].

The adipose tissue functions as an endocrine organ that, in obese people, produces
a high level of tumor-promoting hormones such as leptin and estrogen, and a low level
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of the tumor suppressor hormone, adiponectin [10]. In particular, adipose tissues from
tumor-bearing breasts have shown a distinct molecular signature and physiological status
from those of tumor-free breasts [11]. Furthermore, several adipose tissue-derived miRNAs
were associated with adipocyte differentiation and identified with essential roles in obesity-
associated inflammation, insulin resistance, and tumor microenvironment [2]. While
efficacy of currently approved drug therapies and understanding of drug mechanisms
against obesity remain open for debate [12], diet-derived phytochemicals have emerged as
potential candidates to combat obesity via adipose non-shivering thermogenesis [13], or
targeting of the adipose tissue inflammation [14,15].

Epidemiological data indicate that increased consumption of fruits and vegetables
plays a key role in reducing the incidence of some cancers [16]. These foods contain a signif-
icant number of polyphenols, which are potential agents that reduce obesity in part through
reducing the amount of adipose tissue by stimulating lipolysis [17]. It has been reported
that in pre-adipocyte murine models of differentiation, epigallocatechin-3-gallate (EGCG),
which is the main compound in green tea, reduced adipocytes proliferation, lipid accumu-
lation and expression of peroxisome proliferator-activated receptor gamma (PPARγ) and
CCAAT/enhancer-binding protein alpha (C/EBPα) in mature adipocytes [18]. Whether
diet-mediated polyphenols can consequently alter the secretome profile of adipocytes, and
how secretome-mediated paracrine regulation of cancer cells’ invasive phenotype occurs,
remains to be better addressed.

Therefore, the present study aims at exploring the molecular mechanisms involved
in the adipocyte paracrine regulation of cancer cells invasive characteristics, and how
efficient diet-derived intervention may prevent such regulation. It was found that the
secretome of differentiated adipocytes specifically triggered migration in several TNBC-
derived cells, but not that migration of the ovarian or colon cancer cells tested. Chronic
exposure of adipose-derived mesenchymal stem cells (ADMSC) to EGCG during their
differentiation into mature adipocytes effectively altered adipogenesis and the secretome
profile of differentiated adipocytes as TNBC-derived cell chemotaxis and vasculogenic
mimicry were inhibited. Finally, adipocyte secretome-mediated paracrine regulation of
TNBC-derived cells invasive phenotype required STAT3 oncogenic signaling, and EGCG
was able to acutely inhibit STAT3 phosphorylation.

2. Results
2.1. Phenotypical and Transcriptional Assessment of Adipose-Derived Mesenchymal Stem Cells
Differentiation and Inhibition of Adipogenesis by Green Tea-Derived EGCG

The differentiation of human adipose-derived mesenchymal stem cells (ADMSC) into
mature adipocytes was first performed according to the manufacturer’s instructions. Lipid
droplet generation was effectively observed as early as day 6 in mature adipocytes as
confirmed by increases in size shape due to lipid vesicles accumulation and by Oil Red O
staining (Figure 1A). Interestingly, such differentiation processes were abrogated by the
presence of the diet-derived epigallocatechin-3-gallate (EGCG), a flavonoid believed to
prevent the obesity-associated mortality [19,20], as both cell size and Oil Red O staining
levels were reduced (Figure 1A). When total RNA was extracted from each condition and
RT-qPCR was performed to assess gene expression levels, classical adipogenesis-associated
genes were induced, including the transcription factors PPARγ and C/EBPα, which pro-
mote expression of genes that confer the characteristics of mature adipocytes [21]. Among
those genes are insulin receptors, fatty acid synthase, lipoprotein lipase, adiponectin, leptin,
acetyl-CoA carboxylase beta, and fatty acid binding protein 4 (FABP4, Figure 1B) [22],
the latter being a new player connecting obesity with breast cancer development [23].
Interestingly, EGCG inhibited the induction of these genes by 40–80%, suggesting that
the resulting mature adipocytes may additionally exhibit an altered secretome profile
(Figure 1C). Finally, differential gene expression of inflammatory biomarkers was assessed
comparing genes preferentially expressed in ADMSC (Figure 1D, left) versus genes prefer-
entially expressed in adipocytes (Figure 1D, right). Whereas this does not preclude their
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overall expression, data confirm that the composition of the respective pro-inflammatory
secretome characterizes each of the undifferentiated vs. differentiated adipocyte states.
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Figure 1. Transcriptional validation of ADMSC differentiation into adipocytes and green tea-derived EGCG inhibition of 
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scribed in the Methods section. Oil Red O staining was performed at different stages of differentiation to confirm mature 
adipocyte status through lipid droplets formation, typically observed between day 6 and day 12. (B) Total RNA was ex-
tracted from ADMSC, adipocytes, as well as ADMSC differentiated in the presence or not of EGCG. RT-qPCR was per-
formed using a RT2-Profiler gene array to assess adipogenesis gene expression levels. Ratios of adipocytes gene expres-
sion on ADMSC gene expression were performed and expressed in a logarithmic scale. (C) Ratios of adipocytes differen-
tiated in the presence of EGCG on ADMSC were performed, and EGCG inhibitory potential calculated. (D) Total RNA 
was extracted from ADMSC and from adipocytes. RT-qPCR was performed using a RT2-Profiler gene array to assess in-
flammatory-associated gene expression levels. Ratios of adipocytes/ADMSC gene expression (right), and AD-
MSC/adipocytes (left) gene expression were performed and expressed in a logarithmic scale. Gene arrays data reflect 
one representative experiment out of two. 
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Increased TNBC-Derived Cell Migration 

Secretome from ADMSC and from adipocytes cell cultures was defined as the con-
ditioned media (CM) collected from each of the respective cell lines, and chemoattract-
ant capacity was assessed on human TNBC-derived MDA-MB-231 cells, ES-2 ovarian 
cancer cells, and HT-29 colorectal cancer cells. Adipocytes secretome (Adipo-CM; Figure 
2 closed circles) was found to trigger a higher chemotactic response in TNBC cells than 
in any of the two other cancer cell line models tested when compared to ADMSC secre-
tome (Preadipo-CM; Figure 2, open circles). To further document the evidence of in-
creased chemotaxis observed in MDA-MB-231 cells, a wound-healing assay was per-
formed (Figure 3A), and was found to corroborate the increased invasiveness phenotype 
as cells recovered the wounded area faster in response to Adipo-CM (Figure 3B). Finally, 

Figure 1. Transcriptional validation of ADMSC differentiation into adipocytes and green tea-derived EGCG inhibition of
adipogenesis. (A) ADMSC were differentiated into mature adipocytes in the presence or not of 10 µM EGCG as described in
the Methods section. Oil Red O staining was performed at different stages of differentiation to confirm mature adipocyte
status through lipid droplets formation, typically observed between day 6 and day 12. (B) Total RNA was extracted from
ADMSC, adipocytes, as well as ADMSC differentiated in the presence or not of EGCG. RT-qPCR was performed using a
RT2-Profiler gene array to assess adipogenesis gene expression levels. Ratios of adipocytes gene expression on ADMSC gene
expression were performed and expressed in a logarithmic scale. (C) Ratios of adipocytes differentiated in the presence of
EGCG on ADMSC were performed, and EGCG inhibitory potential calculated. (D) Total RNA was extracted from ADMSC
and from adipocytes. RT-qPCR was performed using a RT2-Profiler gene array to assess inflammatory-associated gene
expression levels. Ratios of adipocytes/ADMSC gene expression (right), and ADMSC/adipocytes (left) gene expression
were performed and expressed in a logarithmic scale. Gene arrays data reflect one representative experiment out of two.

2.2. Adipocytes Secretome, but Not that of Adipose-Derived Mesenchymal Stem Cells, Triggers
Increased TNBC-Derived Cell Migration

Secretome from ADMSC and from adipocytes cell cultures was defined as the condi-
tioned media (CM) collected from each of the respective cell lines, and chemoattractant
capacity was assessed on human TNBC-derived MDA-MB-231 cells, ES-2 ovarian cancer
cells, and HT-29 colorectal cancer cells. Adipocytes secretome (Adipo-CM; Figure 2 closed
circles) was found to trigger a higher chemotactic response in TNBC cells than in any of the
two other cancer cell line models tested when compared to ADMSC secretome (Preadipo-
CM; Figure 2, open circles). To further document the evidence of increased chemotaxis
observed in MDA-MB-231 cells, a wound-healing assay was performed (Figure 3A), and
was found to corroborate the increased invasiveness phenotype as cells recovered the
wounded area faster in response to Adipo-CM (Figure 3B). Finally, chemotaxis screening
of four other human TNBC-derived cell lines was performed with MDA-MB-468, MDA-
MB-157, BT-20, and HCC-70 cells in response to either Preadipo-CM or Adipo-CM. All
but HCC-70 cells were found to be more responsive to Adipo-CM than to Preadipo-CM
(Figure 3C). This suggests that the mature adipocytes secretome exerts oncogenic paracrine
regulation of TNBC cells, increasing their invasiveness.
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MDA-MB-231, ES-2 ovarian carcinoma, and HT-29 colorectal adenocarcinoma.
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Figure 3. Chemotaxis response of different TNBC-derived cell lines to adipocytes secretome. (A) A
wound-healing assay was performed with MDA-MB-231 cells in response to conditioned media
isolated from ADMSC (Preadipo-CM) and from adipocyte conditioned media (Adipo-CM), and
pictures were taken of the recovered area as described in the Methods section. (B) The extent of
the recovered area was calculated from a representative experiment. (C) Chemotaxis screening of
four other human TNBC-derived cell lines was performed with MDA-MB-468, MDA-MB-157, BT-20,
and HCC-70 cells in response to either Preadipo-CM (white bars) or Adipo-CM (black bars). Two
independent cell migration assays were performed and measured in triplicate.
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2.3. EGCG Inhibits Both the Acute Response and the Paracrine Regulation of TNBC Cell
Chemotaxis Response to Mature Adipocytes Secretome

The capacity of EGCG to regulate the chemotaxis response triggered by the adipocytes
secretome was next assessed. Two conditions were tested: first adding the catechin
molecule into the Adipo-CM (acute treatment) and second using a CM from ADMSC
differentiated in the presence of 10 µM EGCG (paracrine regulation). Whereas little inhibi-
tion was found when MDA-MB-231 cells were exposed to Preadipo-CM in the presence
of increasing EGCG concentrations (Figure 4A), a dose-dependent inhibition of chemo-
taxis was observed in response to Adipo-CM and, when treated at 15 µM EGCG, reached
migration levels equivalent to the basal Preadipo-CM response (Figure 4B). When MDA-
MB-231 chemotaxis response was assessed with CM isolated from mature adipocytes and
from ADMSC differentiated in the presence of EGCG, it was also found to be reduced
(Figure 4C). In light of the previously reported involvement of the Fibronectin/STAT3
signaling axis in epithelial-mesenchymal transition (EMT), a process that increases invasion
and metastasis of breast cancer cells [24], cell lysates of the above conditions were isolated.
Immunoblotting was performed and Adipo-CM was found to trigger Fibronectin expres-
sion, a condition which was abrogated by EGCG (Figure 4D). Altogether, these data suggest
that specific signaling pathway inhibition may account for the acute EGCG inhibition of
chemotaxis. More importantly, EGCG is able to prevent the paracrine regulation of TNBC
cell chemotaxis response by altering the adipocyte secretome profile and, ultimately, the
acquisition of an EMT-related invasive phenotype.
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Figure 4. EGCG inhibits the acute response and prevents the paracrine regulation of TNBC cell
chemotaxis to adipocytes secretome. MDA-MB-231 cell migration was assessed as described in
the Methods section in the presence of increasing concentrations of EGCG and in response to
(A) conditioned media isolated from ADMSC (Preadipo-CM), or (B) conditioned media isolated from
differentiated adipocytes (Adipo-CM). (C) Chemotaxis response to conditioned media harvested
from adipocytes that were differentiated from ADMSC in untreated (white bar), vehicle-treated
(ethanol, grey bars), or differentiated in the presence of 15 µM EGCG (black bars). (D) MDA-MB-
231 cells were treated for 24 h in basal media (Control), Preadipo-CM, Adipo-CM, or Adipo-CM
in the presence of 30 µM EGCG. Fibronectin and Tubulin protein expression were then assessed
by immunoblotting using the respective cell lysates. Two independent cell migration assays were
performed and measured in triplicate.
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2.4. STAT3 Is Involved in the Paracrine Chemotaxis Response to Adipocytes Secretome

Stress-induced signaling through signal transducer and activator of transcription
3 (STAT3) is, among other transducing pathways, involved in the initiation, progression,
metastasis, and immune evasion of TNBC [25]. More recently, STAT3 is further considered
as a potential therapeutic target [26–28]. Whether STAT3 is involved in the paracrine
response to mature adipocytes secretome was next assessed. MDA-MB-231 cells were ex-
posed to Preadipo-CM or to Adipo-CM for 24 h and STAT3 phosphorylation status assessed
by Western blotting. STAT3 phosphorylation was induced in response to Preadipo-CM,
whereas phosphorylation was higher in response to Adipo-CM (Figure 5A, upper pan-
els). Interestingly, phosphorylation of the serine/threonine-specific protein kinase AKT,
which plays a key role in multiple cellular processes such as cell proliferation, transcrip-
tion, and cell migration [29,30], was only induced in response to Adipo-CM (Figure 5A,
lower panels). However, EGCG was able to inhibit STAT3 but not AKT phosphoryla-
tion. In addition to EGCG, Tofacitinib and AG490, two pharmacological inhibitors of
STAT3 phosphorylation [31,32], also inhibited Adipo-CM-induced STAT3 phosphorylation
(Figure 5B) as well as the MDA-MB-231 chemotactic cell response (Figure 5C). Finally,
transient siRNA-mediated gene silencing of STAT3 was performed in MDA-MB-231 cells
in order to reduce the STAT3 protein content (Figure 5D, insert). Then, siScrambled or
siSTAT3 cells were challenged to migrate in response to Adipo-CM as a chemoattractant.
Similarly to STAT3 pharmacological inhibition, transient silencing of STAT3 was found to
reduce the MDA-MB-231 chemotaxis response to the adipocytes secretome (Figure 5D).

Molecules 2021, 26, x FOR PEER REVIEW 8 of 18 

 

tion, transcription, and cell migration [29,30], was only induced in response to Adipo-
CM (Figure 5A, lower panels). However, EGCG was able to inhibit STAT3 but not AKT 
phosphorylation. In addition to EGCG, Tofacitinib and AG490, two pharmacological in-
hibitors of STAT3 phosphorylation [31,32], also inhibited Adipo-CM-induced STAT3 
phosphorylation (Figure 5B) as well as the MDA-MB-231 chemotactic cell response (Fig-
ure 5C). Finally, transient siRNA-mediated gene silencing of STAT3 was performed in 
MDA-MB-231 cells in order to reduce the STAT3 protein content (Figure 5D, insert). 
Then, siScrambled or siSTAT3 cells were challenged to migrate in response to Adipo-
CM as a chemoattractant. Similarly to STAT3 pharmacological inhibition, transient si-
lencing of STAT3 was found to reduce the MDA-MB-231 chemotaxis response to the ad-
ipocytes secretome (Figure 5D). 

 
Figure 5. STAT3 involvement in the paracrine chemotaxis response to adipocytes secretome. (A) 
MDA-MB-231 cells were treated for 24 h in the presence of basal media (Control), ADMSC condi-
tioned media (Preadipo-CM), adipocyte conditioned media (Adipo-CM), or Adipo-CM in the 
presence of 30 μM EGCG. STAT3 and AKT phosphorylation status was then assessed by im-
munoblotting using the respective cell lysates. (B) Cells were similarly treated as in (A) with the 
difference that 30 μM Tofacitinib or AG490 were added to the CM. (C) MDA-MB-231 chemotaxis 
response to conditioned media harvested from adipocytes was performed as described in the 
Methods section in the absence (vehicle), or presence of Tofacitinib (closed circles), or AG490 
(closed triangles). (D) MDA-MB-231 chemotaxis response to conditioned media harvested from 
adipocytes was performed as described in the Methods section in control siScrambled cells (open 
circles), or in siSTAT3-transfected cells (closed circles). Insert shows a representative Western blot 
monitoring the extent of STAT3 silencing from siScrambeled and siSTAT3-transfected cells. 
GAPDH was used as a loading control. 

Figure 5. STAT3 involvement in the paracrine chemotaxis response to adipocytes secretome.
(A) MDA-MB-231 cells were treated for 24 h in the presence of basal media (Control), ADMSC
conditioned media (Preadipo-CM), adipocyte conditioned media (Adipo-CM), or Adipo-CM in the
presence of 30 µM EGCG. STAT3 and AKT phosphorylation status was then assessed by immunoblot-
ting using the respective cell lysates. (B) Cells were similarly treated as in (A) with the difference
that 30 µM Tofacitinib or AG490 were added to the CM. (C) MDA-MB-231 chemotaxis response to
conditioned media harvested from adipocytes was performed as described in the Methods section in
the absence (vehicle), or presence of Tofacitinib (closed circles), or AG490 (closed triangles). (D) MDA-
MB-231 chemotaxis response to conditioned media harvested from adipocytes was performed as
described in the Methods section in control siScrambled cells (open circles), or in siSTAT3-transfected
cells (closed circles). Insert shows a representative Western blot monitoring the extent of STAT3
silencing from siScrambeled and siSTAT3-transfected cells. GAPDH was used as a loading control.
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2.5. Adipocytes Secretome Triggers In Vitro 3D-Capillary-Like Structure Maturation, and STAT3
Inhibition Prevents such Maturation

The paracrine regulation of ADMSC and of mature adipocytes secretome was next
assessed on in vitro vasculogenic mimicry (VM), a process known to in part be responsible
for TNBC chemotherapy resistance [33]. MDA-MB-231 cells were seeded on Matrigel and
cultured for 24 h as described in the Methods section in order to generate 3D capillary-like
structures. Representative pictures were taken (Figure 6A, upper panels), and digitalized
structures were used for the analysis presented (Figure 6A, lower panels). Analysis of
the 3D capillary-like structure maturation on Matrigel was performed (Figure 6B) and
shows that unstimulated cells cultured on Matrigel and in the presence of serum-deprived
basal media (unstimulated condition) led to the formation of 3D structures, which was
accelerated by the Preadipo-CM and furthermore by the Adipo-CM (stimulated conditions).
The Adipo-CM generated with EGCG added during adipocyte differentiation (Adipo-CM
+ EGCG (i)), was ineffective in preventing 3D structure maturation. On the contrary, acute
additions of EGCG, Tofacitinib, or AG490, were all shown to prevent STAT3 phosphory-
lation in response to adipocyte secretome, and effectively altered VM processes. Taken
together, these results suggest that efficient targeting of the STAT3 signaling pathway
may be achieved through diet-derived polyphenols and can prevent the acquisition of an
aggressive phenotype in MDA-MB-231 cells, a model of the TNBC.
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Figure 6. Adipocytes secretome triggers in vitro 3D-capillary-like structure maturation, and STAT3
inhibition prevents such maturation. (A) MDA-MB-231 TNBC-derived cells were seeded on Matrigel
and cultured for 24 h as described in the Methods section. Representative pictures were taken (upper
panels), and digitalized structures used for the analysis presented (lower panels). (B) Analysis of the
3D capillary-like structure maturation on Matrigel was performed using ImageJ, and was assessed in
the presence of either serum-deprived basal media (unstimulated condition), or stimulation with
Preadipo-CM, Adipo-CM, or Adipo-CM (i) (CM harvested upon ADMSC differentiation in the
presence of 30 µM EGCG). Acute additions of EGCG, Tofacitinib, or AG490 (all at 30 µM) were done
in the presence of Adipo-CM to the cell culture. Significance: * p < 0.05.

3. Discussion

Adipogenesis is a critical step in adipocyte physiology, and consists in the terminal
differentiation of adipocyte precursor cells (pre-adipocytes) into adipocytes that allows in-
creased storage of fatty acids [34]. Here, ADMSC differentiation into mature adipocytes has
been validated by increased expression of PPARγ and C/EBPα, two transcription factors
considered among the master regulators of this process [35]. Interestingly, expression of
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both biomarkers was prevented by EGCG (Figure 1), and consequently, it was anticipated
that this would alter the state of differentiation as well as the secretome profile of mature
adipocytes. Accordingly, distinct pro-inflammatory profiles are shown to characterize the
ADMSC and adipocyte respective phenotypes (Figure 1D). In accordance with previous
studies, IL6 was more expressed in ADMSC than in mature adipocytes [36], and the expres-
sion of NOS2, IGF1, and IL1B were higher in mature adipocytes than in ADMSC [37–39].
Apart from the regulation of the body’s energy balance, factors secreted from adipose tissue
in obesity play key roles in the modulation of metabolic processes, insulin sensitivity and
immunological responses [40], and are believed to provide protumorigenic chemokines to
promote breast cancer progression [41]. Unfortunately, the detailed mechanisms involved
in adipose tissue paracrine regulation of breast cancer cells are still not well understood.

Here, we provide evidence for a specific and increased paracrine regulatory impact
of the adipocytes secretome on several TNBC-derived cell models. Chemotaxis response
was found to be significantly induced by the secretome of differentiated adipocytes when
compared to that of undifferentiated adipocytes, and this required the activation of the
AKT and STAT3 signaling pathways. EGCG, as well as JAK/STAT inhibitors Tofacitinib
and AG490, all prevented the increase in chemotactic response to cytokines and growth
factors originating from mature adipocytes. Intriguingly, AKT phosphorylation was also
induced but could not be prevented by EGCG. Whereas AKT-targeted therapy is believed
to be a promising strategy to overcome drug resistance in breast cancer [30], such selective
targeting of signaling pathways by EGCG prompts for more research.

The adipose microenvironment in obese people bears many similarities with the
tumor microenvironment with respect to associated cellular composition, chronic low-
grade inflammation, and a high ratio of reactive oxygen species to antioxidants [9]. In
addition, the secretion of a number of inflammation-related adipokines is upregulated by
hypoxia, which is present in some areas of the expanded adipose tissue [42]. Hence, obesity
creates a pro-inflammatory environment that is believed to favor the incidence of several
cancers [43] through numerous signal transduction pathways, including the JAK/STAT3
pathway [44]. Targeting oncogenic transcription factors by polyphenols has recently been
inferred [45], and inhibition of JAK/STAT3 transducing events by EGCG has been reported
in numerous cancers [46–48]. More recently, emerging evidence of dietary phytochemicals
in our fight against cancer has ascribed a role in targeting cancer stem cells (CSC) often
associated with chemoresistance and cancer recurrence [49,50]. Such an avenue towards
CSC targeting has prompted preclinical and clinical settings to repurpose pre-existing
drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such
as STAT3 [51,52]. In our study, we demonstrate that EGCG prevents the differentiation of
ADMSC and modulates the secretome profile of these cells. Furthermore, once the cells
are fully mature, EGCG can hinder its paracrine regulation over the TNBC cells within the
tumor microenvironment, which highlights the potential benefit of its consumption.

Paracrine-mediated regulation of an increased invasive phenotype can, in part, involve
EMT processes [53]. Here, we show that part of the chemotactic response could be achieved
through such process as the expression of the EMT biomarker Fibronectin and was induced
upon incubation with differentiated adipocytes secretome, but not with that from the
ADMSC. Interestingly, EGCG prevented both the chemotactic response of TNBC cells as
well as the induction of Fibronectin in accordance with its capacity to inhibit EMT [54].
EGCG targeting of EMT processes has also recently been documented in ES-2 ovarian
cancer cells where cell migration and in vitro VM were abrogated [55]. In the current study,
we demonstrate that the paracrine regulation of MDA-MB-231-mediated in vitro VM was
abrogated by all three JAK/STAT3 inhibitors (EGCG, Tofacitinib, AG490) tested.

Adipocytes, and their precursors ADMSC, are thought to sustain tumor phenotypes in
part through secretion of signaling molecules and vesicles containing proteins, lipids and
nucleic acids [56]. On the other hand, during their interaction with cancer cells, ADMSC can
in return be reprogrammed into cancer-associated adipocytes to further secrete adipokines,
which stimulate the adhesion, migration, and invasion of cancer cells [57]. Such bidirec-
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tional communication between adipose and breast cancer cells has laid foundations for
the recruitment of macrophages to the mammary tumor inflammatory microenvironment
through increased release of cytokines, growth factors and extracellular matrix compo-
nents [58,59]. Our findings are in accordance with the previous statements, as we found
that both ADMSC and mature adipocytes secrete factors that could contribute to tumor de-
velopment like IL6, EGF, PTGS2 and IL4 in ADMSC, and CCL5, IL1β and IGF in adipocytes.
Recently, FABP4, a member of a family of circulating adipose fatty acid binding proteins,
has emerged as a new link in the obesity-associated breast/mammary tumor develop-
ment [23,60]. Of particular interest, circulating blood concentration FABP4 levels have been
proposed as a new independent breast cancer biomarker as it was found increased in breast
cancer patients [61]. Here, we report that FABP4 transcript levels were increased upon
adipocyte differentiation and, more importantly, that such an induction can efficiently be
prevented by EGCG. More studies will be needed to identify, among the secreted factors,
which one(s) have a leading role in order to design pharmacological interventions.

In conclusion, this study first validated our preadipocytes differentiation protocol at
both the cellular and transcriptional levels. Both the cellular staining and the transcriptomic
data demonstrated clear modulation by EGCG. This last evidence strongly suggests that,
although beyond the immediate scope of this study, the overall soluble secreted growth
factors (secretome) from preadipocytes and mature adipocytes may trigger differential
chemotactic response. The exact identification of these individual growth factors/cytokines
would be a logical follow-up although the current approach used, which is the use of the
cells’ conditioned media to reflect the synergistic action of the complete actors of the secre-
tome, better reflects the pathophysiological tissue microenvironment. One may envision
later and address of the impact of hypoxia, and EGCG tissue biodistribution/bioavailability
using in vivo approaches, as these remain major concerns in obesity.

Our study further provides new molecular evidence demonstrating how dietary inter-
vention upon adipogenesis could alter the secretome profile during adipocyte maturation,
and the paracrine regulation of TNBC cell acquisition of an invasive phenotype (Figure 7).
Data also highlight a critical role of the JAK/STAT3 signaling pathway in cell chemotaxis
and VM, which can be targeted by EGCG as efficiently as by the pharmacological agents
Tofacitinib and AG490. Preventing the onset of an obesogenic environment should help
reduce the incidence of TNBC development.
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Figure 7. Scheme summarizing the preventive and acute effects of EGCG on STAT3-mediated ac-
quisition of an invasive TNBC phenotype. Adipogenesis is induced during ADMSC differentiation
into mature adipocytes. Both of the cell types have characteristic and distinct secretome profiles com-
posed of different levels of pro-inflammatory cytokines, chemokines, and growth factors (Figure 1D).
Whereas ADMSC secretome was characterized by some chemotactic properties towards TNBC cells
(dotted arrow), this was significantly triggered by the secretome resulting from mature adipocytes
(large arrow). EGCG was able to prevent such an effect by inhibiting adipogenesis (Preventive
experimental condition). Increased EMT explains, in part, the resulting increases in TNBC cell
migration and vasculogenic mimicry in response to the adipocytes secretome, the response of which
can be reduced through the inhibition of STAT3-mediated signaling by EGCG, AG490, and Tofacitinib
(Acute experimental condition).
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4. Materials and Methods
4.1. Materials

Sodium dodecylsulfate (SDS), epigallocatechin-3-gallate (EGCG), Tofacitinib, AG490,
and bovine serum albumin (BSA) were purchased from Sigma-Aldrich Canada (Oakville,
ON). Electrophoresis reagents were purchased from Bio-Rad (Mississauga, ON, Canada).
The enhanced chemiluminescence (ECL) reagents were from Amersham Pharmacia Biotech
(Baie d’Urfé, QC, Canada). Micro bicinchoninic acid protein assay reagents were purchased
from Pierce (Rockford, IL, USA). The polyclonal antibodies against Fibronectin, Tubulin,
AKT, phosphorylated AKT, STAT3 and phosphorylated STAT3 were obtained from Cell
Signaling Technology Inc. (Danvers, MA, USA). Horseradish peroxidase-conjugated don-
key anti-rabbit and anti-mouse IgG secondary antibodies were obtained from Jackson
ImmunoResearch Laboratories (West Grove, PA, USA).

4.2. Cell Culture

Human serous carcinoma-derived ES-2 ovarian cancer cells, HT-29 colon adenocarci-
noma, and triple-negative breast cancer cell lines, including MDA-MB-231, MDA-MB-468,
MDA-MB-157, BT-20 and HCC-70, were all purchased from the American Type Culture
Collection (ATCC). BT-20, ES-2 and HT-29 cells were grown as monolayers in McCoy’s 5a
Modified Medium (Wisent, 317-010-CL) containing 10% fetal bovine serum (Life Technolo-
gies, 12483-020), 100 U/mL penicillin and 100 mg/mL streptomycin (Wisent, 450-202-EL).
MDA-MB-231, MDA-MB-157 and MDA-MB-468 breast cancer cell lines were grown in
DMEM Medium (Wisent, 319-005-CL) supplemented with 10% of fetal bovine serum, while
HCC-70 cells were cultured in RPMI (Wisent, 350-007-CL). All cells were cultured at 37 ◦C
under a humidified 95%–5% (v/v) mixture of air and CO2.

4.3. Adipose-Derived Mesenchymal Stem Cell Differentiation

Adipose-derived mesenchymal stem cells (ADMSC; ATCC, PCS-500-011) were grown
using the Mesenchymal Stem Cell Basal Medium (ATCC, PCS-500-030), and supplemented
with Mesenchymal Stem Cell Growth Kit for adipocyte differentiation- Low Serum (ATCC,
PCS-500-040). When cells reached 70–80% confluency, they were seeded at a density of
18,000 cells/cm2 and differentiated into mature adipocytes with Adipocyte Differentia-
tion Toolkit (ATCC, PCS-500-050) following the manufacturer’s instructions. Briefly, cells
were incubated at 37 ◦C with 5% CO2 for 48 h before initiating adipocyte differentiation.
Then, media was removed and cell monolayers rinsed with room temperature DPBS
(ATCC, 302200). Next, 2 mL (for 6-well plates) of pre-warmed (37 ◦C) adipocyte differ-
entiation/initiation medium was added to each well to initiate adipocyte differentiation.
After a 48 h incubation, half the volume of media was removed and the previous steps
repeated for another 48 h. Later, the maintenance phase was initiated by carefully removing
2 mL of media from each well (leaving 1 mL), and replacing it with 2 mL of pre-warmed
adipocyte differentiation/maintenance medium in each well. The latter step was repeated
every 3–4 days for another 11 days until adipocytes reached full maturity (~12–15 days).
Conditioned media (CM) was collected at different time points.

4.4. Oil Red O Staining

In order to assess adipocyte maturation status and to visualize the lipid droplet
formation, medium was removed and cells were incubated with 10% formalin at room
temperature for 5 min, then fresh formalin was added and cells were store at 4 ◦C in the
dark, up to 2 days. The wells were next washed with 60% isopropanol and left to dry. Oil
Red O (0.5 g/100 isopropanol stock solution; Sigma-Aldrich) was added and left for 10 min.
Wells were finally washed with water four times and pictures taken.

4.5. Total RNA Isolation, cDNA Synthesis and Real-Time Quantitative PCR

Total RNA was extracted from cell monolayers using TriZol reagent (Life Technologies,
Gaithersburg, MD, USA). For cDNA synthesis, 2 µg of total RNA were reverse-transcribed
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using a high capacity cDNA reverse transcription kit (Applied Biosystems, Foster City,
CA, USA). cDNA was stored at −80 ◦C prior to PCR. Gene expression was quantified by
real-time quantitative PCR using iQ SYBR Green Supermix (Bio-Rad, Hercules, CA, USA).
DNA amplification was carried out using an Icycler iQ5 (Bio-Rad, Hercules, CA, USA) and
product detection was performed by measuring binding of the fluorescent dye SYBR Green
I to double-stranded DNA.

4.6. Human Adipogenesis and Inflammation PCR Arrays

The Human Adipogenesis RT2 Profiler PCR Array (PAHS-049Z) and the Human
Cancer Inflammation & Immunity Crosstalk RT2 Profiler™ PCR Array (PAHS-181Z) were
used according to the manufacturer’s protocol (QIAGEN). The detailed list of the key genes
assessed can be found on the manufacturer’s website (https://geneglobe.qiagen.com/us/
product-groups/rt2-profiler-pcr-arrays; accessed on 13 February 2021). Using real-time
quantitative PCR, we reliably analyzed expression of a focused panel of genes related to
adipogenesis and PPARγ targets, or to inflammatory cytokines/receptors. Relative gene
expressions were calculated using the 2− ∆∆C

T method, in which CT indicates the fractional
cycle number where the fluorescent signal reaches detection threshold. The “delta–delta”
method uses the normalized ∆CT value of each sample, calculated using a total of five
endogenous control genes (B2M, HPRT1, RPL13A, GAPDH, and ACTB). Fold change values
are then presented as average fold change = 2(average ∆∆C

T) for genes in differentiated
adipocytes relative to pre-adipocytes. Detectable PCR products were obtained and defined
as requiring <35 cycles. The resulting raw data were then analyzed using the PCR Ar-
ray Data Analysis Template (http://www.sabiosciences.com/pcrarraydataanalysis.php;
accessed on 1 February 2021). This integrated web-based software package automati-
cally performs all ∆∆CT-based fold-change calculations from the uploaded raw threshold
cycle data.

4.7. Western Blotting

TNBC-derived MDA-MB-231 cells were lysed in a buffer containing 1 mM each of NaF
and Na3VO4, and proteins (30 µg) were separated by SDS-polyacrylamide gel electrophore-
sis (PAGE). After electrophoresis, proteins were electro-transferred to polyvinylidene
difluoride membranes, which were then blocked for 1 h at room temperature with 5%
nonfat dry milk in Tris-buffered saline (150 mM NaCl, 20 mM Tris-HCl, pH 7.5) contain-
ing 0.3% Tween-20 (TBST; Bioshop, TWN510-500). Membranes were further washed in
TBST and incubated with the appropriate primary antibodies (1/1000 dilution) in TBST
containing 3% BSA and 0.1% sodium azide (Sigma-Aldrich), followed by a 1 h incubation
with horseradish peroxidase-conjugated donkey anti-rabbit or anti-mouse IgG at 1/2500
dilutions in TBST containing 5% nonfat dry milk. Immunoreactive material was visualized
by ECL.

4.8. Chemotactic Cell Migration Assay

Cell migration assays were carried out using the Real-Time Cell Analyzer (RTCA)
Dual-Plate (DP) Instrument of the xCELLigence system (Roche Diagnostics). Adherent cell
monolayers were trypsinized and seeded (30,000 cells/well) onto CIM-Plates 16 (Roche
Diagnostics). These migration plates are similar to conventional Transwells (8 µm pore size)
but have gold electrode arrays on the bottom side of the membrane to provide real-time
measurement of cell migration. Prior to cell seeding, the underside of the wells from the
upper chamber were coated with 25 µL of 0.15% gelatin in PBS and incubated for 1 h at
37 ◦C. Chemotaxis was monitored for 8 h using as chemoattractant either media conditioned
from serum-starved ADMSC (Preadipo-CM) or from mature adipocytes (Adipo-CM), in
the presence or not of EGCG, Tofacitinib, or AG490. The impedance values were measured
by the RTCA DP Instrument software and were expressed in arbitrary units as Normalized
Cell Migration Index. Each experiment was performed three times in duplicate.

https://geneglobe.qiagen.com/us/product-groups/rt2-profiler-pcr-arrays
https://geneglobe.qiagen.com/us/product-groups/rt2-profiler-pcr-arrays
http://www.sabiosciences.com/pcrarraydataanalysis.php
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4.9. Wound-Healing Assay

MDA-MB-231 cells were seeded into 6-well tissue culture dishes and grown to nearly
confluent cell monolayers. Then, a linear wound was generated in the monolayer with a
sterile 200µL pipette tip creating a cell-free area [62]. Cultures were gently washed with the
growth medium to remove loose cells. The cells were then treated with either Preadipo-CM
or Adipo-CM. Immediately after the scratch and at 2, 4, and 8 h, at least four images of
the scraped area were captured using phase contrast microscopy and analyzed using NIH
ImageJ software [63]. Two independent experiments were performed, using three wells for
each stimulating condition. The same scratched area was selected for the measurements at
each time of the study.

4.10. In Vitro Vasculogenic Mimicry Assay

In vitro vasculogenic mimicry (VM) of human TNBC-derived MDA-MB-231 cells was
assessed by Matrigel tube formation as previously described [55]. In brief, each well of a
96-well plate was pre-coated with 50 µL of Matrigel. After gel solidification, MDA-MB-231
cell suspension in culture media (5 × 104 cells/200 µL) was seeded into the wells. Either
serum-deprived basal media (unstimulated condition), or stimulation with Preadipo-CM or
Adipo-CM (stimulated conditions) were performed. Acute additions of EGCG, Tofacitinib,
or AG490 (all at 30 µM) were done in the presence of Adipo-CM to the cell culture and
incubated at 37 ◦C in a CO2 incubator. Pictures were taken overtime using a digital camera
attached to a phase-contrast inverted microscope. Images were then placed in bins and
subjected to the “Skeletonize” function of ImageJ software. The corresponding loop area,
loop perimeter, branching, and tube elongation parameters were measured using the
2D/3D skeleton PlugIn [64] for the NIH ImageJ software [65].

4.11. Statistical Data Analysis

Unless otherwise stated, data and error bars were expressed as means ± SEM of three
or more independent experiments. Statistical analysis of data was performed by Kruskal–
Wallis with DunnTukey’s post-test to establish differences among groups or Mann–Whitney
for two groups’ comparison. Probability values of less than 0.05 were considered significant
and an asterisk identifies such significance in the figures. GraphPad Prism 7 software (San
Diego, CA, USA) was used for all analyses.
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Abbreviations

ADMSC Adipose-derived mesenchymal stem cells
AKT Protein kinase B
C/EBPα CCAAT/enhancer-binding protein alpha
CM Conditioned media
CSC Cancer stem cells
EGCG Epigallocatechin-3-gallate
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EMT Epithelial-mesenchymal transition
FABP4 Fatty acid binding protein 4
PPARγ Peroxisome proliferator-activated receptor gamma
STAT3 Signal transducer and activator of transcription 3
TNBC Triple negative breast cancer
VM Vasculogenic mimicry
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