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Abstract. Patents diagnosed with acute promyelocytic 
leukemia were treated with Vesanoid® [all‑trans retinoic acid 
(ATRA)]. ATRA promotes the maturation and differentiation 
of leukemia cells and is therefore capable of reducing the symp‑
toms of leukemia by preventing aggregation of myeloid cells. 
However, the clinical applications of ATRA are limited by its 
side effects, including acute retinoid resistance, hypertriglyc‑
eridemia, mucocutaneous dryness, nausea, brief recovery time 
relapse and drug resistance. Therefore, combinations of ATRA 
and other anticancer drugs are being investigated to overcome 
these limitations. In our previous study it was shown that in 
leukemia cells, (‑)‑epigallocatechin‑3‑gallate (EGCG) reduced 
cell proliferation and induced apoptotic cell death. In the present 
study, an in vitro evaluation of the effects of the combination of 
EGCG and ATRA on FLT3‑mutated cell lines was performed 
using the isobologram method. The results showed that there 
was an additive effect in leukemic cells when treated with a 
combination of ATRA and EGCG. Thus, it was concluded that 
the cytotoxic effects of EGCG were improved by ATRA.

Introduction

FMS‑like tyrosine kinase 3 (FLT3) belongs to the Receptor 
Tyrosine Kinase subclass III family, which serves a vital role in 
differentiation, proliferation and apoptosis of myeloid cells (1). 
The most frequently observed FLT3 mutations are internal 
tandem duplications (FLT3/ITD) in the juxtamembrane 

domain, which occur in 15‑35% of patients with acute myeloid 
leukemia (AML) (2), and mutations in the tyrosine kinase acti‑
vation loop are observed in 5‑10% of AML patients (3). Patients 
with AML with FLT3‑ITD have higher relapse rates (4) and 
consequently less favorable disease‑free and overall survival 
rates (5), particularly in AMLs with a larger ITD sizes (6), 
higher allelic burden (7) or multiple ITDs (8). Therefore, inhi‑
bition of FLT3 has become a potential therapeutic choice, and 
clinical trials of inhibitors of FLT3 in AML have been going on 
for a decade (9). To date, there have been >20 small molecule 
inhibitors against FLT3 which have been investigated; some of 
which have been examined in clinical trials (10). These include 
midostaurin (PKC412), sorafenib (BAY 43‑9006), sunitinib 
(SU11248), tandutinib (MLN518), lestaurtinib (CEP‑701), 
KW‑2449, AKN‑032, AC220, ABT‑869 and Quizartinib 
(AC220) (11,12). The majority of these inhibitors are structur‑
ally heterocyclic compounds that inhibit FLT3 activity by 
competing with adenosine triphosphate (ATP) to bind to the 
tyrosine kinase domain ATP‑binding pocket (13). Functionally, 
these inhibitors may be general multikinase inhibitors. Their 
clinical activities appear to be mediated by FLT3 inhibition, so 
their activity is restrained to AML carrying FLT3‑ITDs, and 
associated with the inhibition of FLT3 phosphorylation and its 
downstream signaling effectors (14).

Patients diagnosed with acute promyelocytic leukemia 
(a subtype of AML) are treated with Vesanoid® [all‑trans 
retinoic acid (ATRA)]. ATRA promotes the maturation and 
differentiation of leukemia cells and is therefore capable of 
reducing the symptoms of leukemia by preventing aggregation 
of myeloid cells (15). Furthermore, ATRA has been shown to 
arrest cell growth, induce cell differentiation and induce cell 
death of various types of cancer cells in vitro (16). Nonetheless, 
the clinical applications of ATRA are limited by its side effects, 
including acute retinoid resistance, hypertriglyceridemia, 
mucocutaneous dryness, nausea, brief recovery time relapse 
and drug resistance (17). Additionally, due to its low plasma 
concentrations, its medical applications are further reduced. 
Therefore, combinations of ATRA and other anticancer 
drugs were investigated to overcome these limitations (18). A 
previous study showed that ATRA can increase the cytotoxic 
effects of protein kinase C 412 in AML cell populations with 
genetic FLT3 abnormalities (19).
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Green tea (from Camellia sinensis) has been utilized 
as a Traditional Chinese Medicine for millennia. The 
primary active polyphenolic compounds of green tea are 
catechins [epicatechin, epigallocatechin and (‑)‑epigallocat‑
echin‑3‑gallate (EGCG)]. Among these catechins, EGCG is 
the foremost viable catechin that can reduce the proliferation 
of cells and induce apoptosis in cancer cells (20). It has been 
shown that EGCG inhibits cancer growth, including lung (21), 
prostate (22), colon (23), skin (24) and breast cancer (25).

In previous reports, EGCG (26) and ATRA (19) demon‑
strated an anti‑proliferative effect on AML cells with FLT3 
mutations. In the present study, an in vitro investigation was 
performed to assess the effect of the combination of EGCG 
and ATRA on FLT3‑mutated cell lines.

Materials and methods

Cell lines and cell culture. Experiments were performed 
using four human leukemia cell lines: MOLM‑14, MOLM‑13 
KOCL‑48 and MV4‑11 (26). These above cells were grown 
in RPMI‑1640 medium (Sigma‑Aldrich; Merck KGaA) 
supplemented with 10% heat‑inactivated FBS (Thermo Fisher 
Scientific, Inc.), 100 IU/ml penicillin and 0.1 mg/ml strep‑
tomycin (cat. no. P4333; Sigma‑Aldrich; Merck KGaA) in a 
humidified incubator with 5% CO2 at 37˚C.

Reagents. EGCG (>97% purified powder) was generously 
gifted by Dr Yukihiko Hara (Tea Solutions, Hara Office 
Inc.) and ATRA was purchased from FUJIFILM Wako Pure 
Chemical Corporation. The reagents were dissolved in DMSO. 
Control cells were cultured with an equivalent concentration 
of DMSO as the maximum reagent dose. Throughout all the 
experiments, DMSO concentration did not exceed 0.1%, and 
thus should have had any effect on cytotoxicity (27).

Cell proliferation assay. Cell proliferation assays were 
performed using a trypan blue dye exclusion assay as described 
previously (26,28).

Isobologram. The dose‑response interaction between ATRA 
and EGCG in the four cell lines were evaluated at the IC50 
doses using an isobologram of Steel and Peckham as described 
previously (19,29,30).

Statistical analysis. Data for isobologram were analyzed as 
described previously (26,31). The observed data were compared 
with the predicted minimum and maximum values for the 
combined effect. If minimum predicted value ≤ observed data 
≤ maximum predicted data, the combined effect was additive. 
However if the mean of the observed data was higher than the 
maximum predicted data or lower than the minimum data, the 
combined effect was considered synergistic or antagonistic, 
respectively. To compare the three groups (observed, predicted 
minimum and predicted maximum data), a Friedman tests 
followed by a post hoc Nemenyi comparisons test was used.

To determine whether antagonism or synergism truly 
existed, a Wilcoxon signed‑ranks test was used to compare 
the observed data with the predicted maximum or minimum 
data for an additive effect; the data were not normally 
distributed. P<0.05 suggested the combined effect was 

considered significant. P≥0.05 suggested the combined the 
effect was regarded as being additive to antagonistic or addi‑
tive to synergistic. Statistical analysis was performed using R 
version 4.0.0 (32). All experiments were performed at least 
three times.

The IC50 values were calculated using linear approxima‑
tion of the percentage of survival vs. the concentration of the 
drug and was performed using GraphPad Prism version 8.4.0 
(GraphPad Software, Inc.).

Results

ATRA has been shown to suppress cellular proliferation 
by inducing apoptosis (19), and EGCG is considered to be 
an FLT3‑inhibitor which suppresses cell proliferation by 
disrupting a FLT3‑Hsp90 interaction in FLT3‑mutated cell 
lines (26). The aim of the present study was to determine 
whether a combination of the two reagents increased the effect 
of these drugs on suppression of cell growth in FLT3‑mutated 
cell lines. The cytotoxic interaction of two reagents were 
examined by isobologram.

In MOLM‑13 cells, one of the data points fell in the area 
of sub‑additivity (Fig. 1A) but the results in Table I show that 
the mean value of the observed data (0.587) was smaller than 
that of the predicted maximum data (0.627) and larger than 
that of the predicted minimum data (0.328). Therefore, the 
combination of EGCG and ATRA was regarded as additive in 
MOLM‑13 cells.

The results showed that the combination of ATRA and 
EGCG had an additive cytotoxic effect on MOLM‑13 cells 
compared with each agent alone. For example, the IC50 of 
ATRA alone in MOLM‑13 cells was 0.0192±0.0054 µM; 
however, the IC50 of ATRA was significantly reduced to 
0.0008±0.0008 µM (P<0.01) following combined treatment 
with EGCG (15 µM) (Table II).

The results in Fig. 1B showed that almost all the data 
points in the KOCL‑48 fell in the area of sub‑additivity, 
suggesting that the combined effect of ATRA‑EGCG was 
antagonistic, as the mean of the observed data (0.875) was 
significantly larger than both the predicted minimum (0.463) 
and maximum values (0.272) (Table I; P=0.0031). Nemenyi 
post‑hoc tests were performed, and the results showed there 
was a significant difference between the observed data and 
the predicted minimum data (P=0.0026), but not between the 
observed data and the predicted maximum data (P=0.1455). 
To determine whether the condition of antagonism truly 
existed, a Wilcoxon signed‑ranks test was used for comparing 
the observed data with the predicted maximum data for an 
additive effect (Fig. 2A). The results showed that the prob‑
ability value was significant (P=0.0312) suggesting that the 
observed data were significantly higher than the predicted 
maximum data (Table I), indicative of an antagonistic effect 
of simultaneous exposure to the combined treatment in 
KOCL‑48 cells.

Some data points fell on the border of additivity, 
whereas other data points fell in the area of sub‑additivity 
in MOLM‑14 and MV4‑11 cells and were thus considered 
additive/antagonism (Fig. 1C and D; MOLM‑14, P=0.0057; 
MV4‑11, P=0.0009). Nemenyi post‑hoc test results showed 
that there were significant differences between the observed 
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Figure 1. Isobolographs of simultaneous treatment with ATRA and EGCG. Isobolographs of the various treatments in (A) MOLM‑13, (B) KOCL‑48, 
(C) MV4‑11 and (D) MOLM‑14 cells. Each data point represents the mean ± standard deviation of at least three separate experiments in isobolograms. 
Treatment with a combination of ATRA and EGCG had an additive effect on MOLM‑13 cells and an antagonistic effect on MOLM‑14, MV4‑11 and KOCL‑48 
cells. ATRA, all‑trans retinoic acid; EGCG, (‑)‑epigallocatechin‑3‑gallate.

Table I. Mean values of the observed data and the estimated minimum and maximum values of combined treatment with ATRA 
and EGCG.

 Predicted values
 for the additive effect P‑valueb

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ P‑valuec,
Cell line n Ob. data Minimum Maximum P‑valuea Ob./Min Ob./Max Ob./Max Effect

MOLM‑13 5 0.587 0.328 0.627     Additive
KOCL‑48 6 0.875 0.272 0.463 0.0031 0.0026 0.1455 0.0312 Antagonism 
MV4‑11 7 0.676 0.301 0.593 0.0009 0.0005 0.1472 0.0156 Antagonism 
MOLM‑14 6 0.69 0.43 0.616 0.0057 0.0043 0.4804 0.0625 Additive to 
         antagonistic

aFriedman test; bNemenyi post hoc test; cWilcoxon signed‑rank test. Ob., observed; ATRA, all‑trans retinoic acid; EGCG, (‑)‑epigallocate‑
chin‑3‑gallate.
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Table II. IC50 values of ATRA, EGCG and ATRA‑EGCG combined on leukemia cells.

 Cell line
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
IC50 value MOLM‑13, µM MOLM‑14, µM MV4‑11, µM KOCL‑48, µM

ATRA 0.0192±0.0054 0.0867±0.0242 3.4933±0.2031 11.3421±1.0055
EGCG 18.8333±0.2902 26.7251±0.2554 26.7531±1.2773 26.6055±0.3783
ATRA+EGCG (5 µM)  0.0088±0.0092 ‑ ‑ ‑
ATRA+EGCG (10 µM) 0.0031±0.0009 ‑ ‑ ‑
ATRA+EGCG (15 µM) 0.0008±0.0008 0.0259±0.01111 0.5683±0.0355 ‑
ATRA+EGCG (20 µM) ‑ ‑ ‑ 15.2145±1.0054
ATRA+EGCG (23 µM) ‑ 0.0015±0.0027 0.0317±0.0630 ‑
ATRA+EGCG (25 µM) ‑ ‑ ‑ 0.9861±0.1845
ATRA+EGCG (26 µM) ‑ 0.0011±0.0020 ‑ ‑

ATRA, all‑trans retinoic acid; EGCG, (‑)‑epigallocatechin‑3‑gallate.
 

data and the predicted minimum data (P<0.05), but not 
between the observed data and the predicted maximum data 
in MOLM‑14 and MV4‑11 (Table I). However, the mean value 
of the observed data (MV4‑11, 0.676) was significantly higher 
than the predicted maximum value (MV4‑11, 0.593; P<0.0156; 
Table I; Fig. 2B) suggesting a true antagonistic effect of the 
ATRA‑EGCG combination in MV4‑11 cells. In contrast, the 
P‑value was 0.0625 suggesting an additive to antagonistic 
effect in MOLM‑14 cells (Table I; Fig. 2C).

Discussion

ATRA has been used as a major treatment intervention for 
patients with APL and functions by inhibiting vascular endo‑
thelial growth factor, which is crucial for angiogenesis (33). 
However, the duration of remission that is induced and main‑
tained by ATRA therapy alone is short‑lived, and ATRA alone 
fails to induce a second remission in the majority of patients 
following relapse (34). In order to address these issues, it may 
be necessary to enhance the efficacy of ATRA during the first 
treatment regimen. In general, AML is the result of at least 
two combined pathophysiological problems, including the 
acquisition of chromosomal rearrangements and multiple gene 
mutations which confer a proliferative, survival advantage 
and/or impaired hematopoietic differentiation (35). Therefore, 
administration of a therapy designed to address just one 
pathophysiological pathway is likely insufficient for a favor‑
able response. In addition, administration of anticancer drugs 
may also result in severe cytotoxic side effects, restricting the 
window of doses which can be administered, thus limiting 
the potential efficacy of these therapeutic approaches (36). 
Through enhancing the effectiveness of cancer chemotherapy, 
the use of different combinations of anticancer drugs may 
overcome these limitations (36). The majority of anticancer 
drugs have distinct molecular mechanisms by which it exert 
its effects, and are thus associated with specific cytotoxic 
side‑effects. Furthermore, for each drug there is an upper limit 
of concentration which can be used to achieve effective inhibi‑
tion of tumor‑cell proliferation whilst minimizing the extent of 
damage to healthy cells. A balance of a cocktail of anticancer 

Figure 2. Comparison of the predicted maximum data for an additive 
effect with the observed data obtained from simultaneous exposure to 
all‑trans retinoic acid and (‑)‑epigallocatechin‑3‑gallate. Predicted max and 
observed effects of combined treatment in (A) KOCL‑18, (B) MV4‑11 and 
(C) MOLM‑14 cells.
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drugs may therefore maximize the beneficial effects, reducing 
the dose of each individual drug required and thus reducing the 
associated cytotoxic side effects of each individual drug (37).

The mechanism of the combined effect of ATRA and 
EGCG has only been extensively studied on APL and mela‑
noma. ATRA enhances the antitumor activity of EGCG by 
upregulating the expression of 67‑laminin receptor through 
retinoic acid receptor (38). EGCG has also been shown 
to support ATRA‑induced neutrophil differentiation via 
death‑associated protein kinase 2 (39). Another study found that 
ATRA combined with EGCG augmented cell differentiation 
in APL cells by enhancing the expression of phosphatase and 
tensin homolog to regulate the phosphatidylinositol 3‑kinase 
PI3K/Akt/mTOR signaling pathway (40). However, to the 
best of our knowledge, there are no studies reporting on the 
combined treatment of ATRA and EGCG in AML cell lines 
carrying a FLT3 mutation. Thus, the aim of the present study 
was to determine the impact of a combination of ATRA and 
EGCG on FLT3‑mutated AML cell lines. A limitation of the 
present study is the fact that APL cell lines were not used to 
evaluate the effects of the combined treatment.

A previous study found that the side effects associated with 
ATRA treatment were correlated with the dose given (17). 
Therefore, combined treatment with ATRA and EGCG may 
maximize the therapeutic efficacy and mitigate the cytotoxic 
side effects.

In conclusion, the effects of the combined treatment with 
ATRA and EGCG observed in the present study provide exper‑
imental evidence of the potential use of this combination for 
treatment of patients with AML who harbor FLT3‑mutations. 
The novelty of the findings of the present study is that the 
combination of ATRA and EGCG resulted in an additive but 
not synergistic effect, as seen in APL and melanoma cells. The 
underlying mechanism of the combined effect is not under‑
stood and requires further study.
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