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ABSTRACT

To evaluate the cytotoxicity effects of luteolin (LUT) and kaempferol (KAE) via reactive oxygen
species (ROS) mediated mitochondrial targeting on hepatocytes obtained from the liver of
hepatocellular carcinoma (HCC) rats. In this study, HCC induced by diethylnitrosamine (DEN) and 2-
acetylaminofluorene (2-AAF). In the following, rat liver hepatocytes and mitochondria were isolated
and tested for every eventual apoptotic and anti-HCC effects of LUT and KAE. The results of MTT
assay showed that LUT and KAE were able to induce selective cytotoxicity in hepatocytes of HCC
group in a dose- and time-dependent manner. Treatment of mitochondria from hepatocytes of HCC
group with LUT and KAE were accompanied by loss of mitochondrial membrane potential (MMP)
and mitochondrial swelling and release of cytochrome c (P < 0.001) via reactive oxygen species
(ROS) generation before cytotoxicity ensued. LUT and KAE also increased activation of caspase-3 (P
< 0.001 and P < 0.01, respectively). Flow-cytometry analysis indicated that the mode of cell death
induced by these flavonoids were mostly apoptosis. Importantly, LUT and KAE were nontoxic for
healthy hepatocytes and mitochondria. Therefore, we suggest that LUT and KAE are a good
candidate for the complementary therapeutic agent against HCC.

Introduction

Hepatocellular carcinoma (HCC) represents a major
form of primary liver cancer in adults. It is the second
and sixth leading cause of cancer-related death in males
and females, respectively (1,2). Currently, surgical resec-
tion and local ablative therapies are adopted when liver
transplantation is not accessible, and recurrence is the
main reason of death after surgical treatment for this
cancer (1,2). Another therapy for HCC treatment is che-
motherapy, but it has been shown that the HCC has a
high resistance to some treatments, including chemo-
therapy (3). The treatment of this cancer is still a big
challenge in medicine. So finding an effective natural
medicine which has anti-HCC effect is of great signifi-
cance undoubtedly (1,2).

Plant polyphenols gain a remarkable consideration in
treating various types of cancers such as colon cancer (4).
Flavonoids comprise a large group of plant secondary, they

are widely dispersed throughout the plant kingdom and
are commonly found in natural sources such as fruits, veg-
etables, and certain beverages (5).

Several researches have indicated that these natural
compounds are available in medical and edible plants,
and epidemiological research suggests that these natural
compounds play an important role in the prevention of
carcinogenesis (6-9). Flavonoids are known to suppress
tumor cell growth that is mediated via the induction of
apoptosis signaling in various tumor cell lines (10,11).
Some studies suggested that flavones and flavonols
showed cytotoxicity in vitro to several human cell lines,
such as colon, prostate, and human cervical carcinoma
cells (12). Luteolin (LUT) as a flavone and Kaempferol
(KAE) as a flavonol, are common dietary flavonoids can
be found in a variety of vegetables, fruits, and medicinal
herbs.
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LUT and KAE have been shown to have many biolog-
ical activities including anti-cancer. The anti-cancer
effect of LUT and KAE has been studied in vitro and
could induce tumor cells apoptosis (13-17). It was also
showed that KAE is much less toxic to normal cells in
comparison to standard chemotherapy drugs (18). The
functions and the cytotoxicity mechanisms of LUT and
KAE on hepatocytes and mitochondria isolated from
HCC rat model by DEN and 2-AAF were not completely
reported till now. This study focused on the apoptotic
effect of LUT and KAE on hepatocytes and mitochondria
obtained from the liver of HCC rats and the detailed
mechanism.

Materials and Methods
Animal Studies

Male Sprague-Dawley rats and their standard feed pellets
were obtained from Institute Pasteur (Tehran, Iran). All
animals were kept under the constant environmental
temperature of 22°C, and 12 h light/dark cycles with free
access to feed and distilled water. The protocol for this
study was approved by the Animal Care and Use Com-
mittee (ACUC), Faculty of Pharmacy, Shahid Beheshti
University of Medical Sciences, Tehran, Iran.

The animals were divided into two groups. Group
A: Control animals received intraperitoneal injections
(i.p.) of corn oil. Group B animals were administered
with single dose DEN (200 mg/kg body weight) intra-
peritoneally (i.p.). Then, 14 days after DEN adminis-
tration, HCC was promoted with dietary 2-AAF
(0.02%, w/w) for 14 days (19). In our previous stud-
ies, HCC was confirmed via the histopathological
evaluations, determinations of levels liver injury
markers and liver alpha-fetoprotein (AFP); as a can-
cer-specific marker (20-22).

Isolation of Mitochondria from Rat Hepatocytes

At the end of the estimated HCC induction process
(week 15), rats were anesthetized with Ketamine
(80 mg/kg, i.p.) and xylazine (5 mg/kg, i.p.) and then
rat liver hepatocytes were isolated using the two-step
collagenase liver perfusion technique. After isolation
of hepatocytes from HCC and normal groups were
categorized using flow cytometry. The differential
centrifugation (5 min at 760 x g for the first stage
and 20 min at 8000 x g for the second stage) were
used for isolation of mitochondria from hepatocytes
(23-26). In this study, for the determination of mito-
chondrial toxicity parameters, the mitochondria were

suspended in corresponding buffers, respectively. All
tests were carried out three times.

Determination of Cytotoxicity

The hepatocytes obtained from the normal and HCC
cells (1 x 10*/well) were placed in 96-well plates and
treated with 2.5-100 uM concentrations of LUT and
KAE for 48 h (Cells were maintained in RPMI 1640,
supplemented with 10% FBS and antibiotics (50 U/ml
of penicillin and 50 pg/ml streptomycin). After treat-
ment, MTT (5 mg/ml in RPMI 1640) reagent was
added to each well. After 4 h, the reaction was
stopped by addition of 100 ul of DMSO. The absor-
bance at 570 nm of the solubilized MTT products
was measured with an ELISA reader. The process was
repeated in triplicate to confirm accuracy. The ICs,
was calculated by the Logit method (27).

Determination of Caspase-3 Activity

Caspase-3 activity was assayed by using the Sigma’s cas-
pase-3 assay kit (Sigma-Aldrich, Taufkirchen, Germany)
and the concentration of the p-nitroaniline released
from the substrate at 405 nm used for caspase-3 activity
was assayed (28,29).

Quantification of Apoptosis

Apoptotic cell detection was performed using FITC conju-
gated annexin-V and PI. The hepatocytes were treated
with 12 uM of LUT and 30 uM KAE for 24 h. After treat-
ment with LUT and KAE, the hepatocytes were pelleted
down by centrifugation at 2000 rpm at 4°C. The hepato-
cytes were resuspended in 0.5 ml of binding buffer
(Annexin V binding buffer containing 100 mM HEPES/
NaOH, 150 mM NaCl, and 2.5mM CaCl,.2H,0; pH =
7.4) and again centrifuged. Pallets were dissolved in same
buffer containing FITC-Annexin V at the final concentra-
tion of 5 uM and PI at 10 uM. Cells were incubated in
dark for 15 min and then analyzed by flow cytometry (27).

Measurement of Intracellular ROS

The intracellular generation of ROS was measured by
flow cytometry using DCHF-DA. Briefly, the normal
and HCC hepatocytes (1 x 10° cells) treated with LUT
and KAE at the indicated concentration 12 uM and
30 uM for 24 h. After that, the hepatocytes washed twice
with PBS and were stained with 10 uM DCFH-DA for
30 min at 37°C in the dark. The intracellular ROS pro-
duction was detected by the flow cytometric assay (30).



Measurement of MMP

In this study, loss of MMP was determined by flow
cytometry. Briefly, hepatocytes obtained from normal
and HCC group were exposed to LUT (12 uM) and
KAE (30 uM) for 24 h, and the MMP was measured
directly using 10 uM Rh 123. The samples (10*
events) were analyzed by flow cytometry at an excita-
tion and emission wavelengths of 488 and 530 nm,
respectively. The double peak for the Rh 123 fluores-
cence indicates a redistribution of part of the dye into
the cytosol and the double peak in HCC hepatocytes
compared with a peak of control untreated hepato-
cytes (30).

Determination of Mitochondrial Swelling

Mitochondrial swelling was measured spectrophoto-
metrically as a decrease in absorbance at 540 nm. Iso-
lated mitochondria from liver hepatocytes were
resuspended in the swelling buffer, which contained
70 mM sucrose, 230 mM mannitol, 3 mM HEPES,
2 mM Tris-phosphate, 5 mM succinate, and 1 uM of
rotenone to a final protein concentration of 1000 g/
ml and incubated at 37°C with LUT and KAE at con-
centration of 35 uM (ICsy). Also, Cacl, is used as a
positive control. The absorbance was measured at
540 nm at 15 and 30 min (20).

Cytochrome c Release

In this study, the cytochrome c release was measured
using the Quantikine Rat/Mouse Cytochrome ¢ Immu-
noassay kit provided by R & D Systems, Inc. (Minneapo-
lis, Minn.) (25).

Statistical Analysis

All results in this study are presented as mean +SD. The
statistical analyses were performed using the GraphPad
Prism software (version 5). Assays were performed three
times. Statistical significance (set at P < 0.05) was carried
out by using the one-way and two-way ANOVA test.

Results
LUT- and KAE-induced Cytotoxicity

As shown in Figure 1; the HCC hepatocytes viability
was decreased by different concentrations of LUT and
KAE after 48 h treatment. The results of the cytotox-
icity showed that LUT was more active than KAE
with an estimated ICs, value of 12 uM, compared
with KAE with ICs, near to 30 uM. Also, no
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Figure 1. Cytotoxicity assay. Cytotoxic effects of luteolin and
kaempferol on hepatocytes from normal group and comparative
effects of luteolin and kaempferol at 0-100 1M on the cytotoxic
of HCC hepatocytes. The cells were treated with specified concen-
trations of respective two flavonoids for 48 h, and cytotoxic
effects were determined by MTT assay. The results were reported
as the mean =& SD (n = 3). The stars show that values were signif-
icantly different from the corresponding control (**P < 0.01 and
P < 0.001).

significant decrease in viability was observed in the
normal hepatocytes treated with all applied concen-
tration of LUT and KAE compared with the corre-
sponding control group.

LUT- and KAE-induced Activation of Caspase-3

The caspase-3 activity in hepatocytes was determined 24-
h after the addition of LUT (12 uM) and KAE (30 uM).
The enzymatic activities of caspase-3 in hepatocytes
obtained from the HCC group were significantly
increased after 24 h of incubation with LUT and KAE at
applied concentrations (12 and 30 uM). Furthermore,
our results showed that caspase-3 activity in the hepato-
cytes from normal group remained unchanged after 24 h
of incubation with LUT (12 uM) and KAE (30 uM)
(Figure 2).

LUT- and KAE-induced Apoptosis

To figure out the mode of cell death, the double labeling
method, using annexin V and PI was utilized to deter-
mine apoptotic % versus necrotic cells % 24 h following
addition of LUT (12 uM) and KAE (30 uM) in
hepatocytes. As shown in Figure 3 the total apoptosis %
(including early apoptotic plus late apoptotic hepato-
cytes) for HCC hepatocytes 39.83 + 6.10% following
LUT (12 uM) addition and 9.32 + 3.92% after KAE
(30 uM) treatments, which was significantly different
from those of normal hepatocytes. Our results indicated
that LUT is more potent than KAE at inducing apoptosis
on HCC hepatocytes.
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Figure 2. Induction of caspase-3 activity. Following treatment
with LUT (12 «M) and KAE (30 M) for 24 h, caspase-3 activity
was analyzed by Sigma-Aldrich kit. The kit determines is produc-
ing pNA that is released from the interaction of caspase-3 and
AC-DEVD-pNA (peptide substrate). The results were reported as
the mean & SD (n = 3). The stars show that values were signifi-
cantly different from the corresponding control (*“P < 0.01 and
P < 0.01).

LUT- and KAE-induced ROS Formation

Further, ROS generation assayed by fluorescent probe,
DCFH-DA, and monitored by flow cytometry. In the
hepatocytes isolated from HCC group, the potency of
ROS generation was: LUT > KAE. LUT and KAE-
induced elevation in ROS production only in the hepato-
cytes isolated from HCC group. Figure 4 (D and F)
shows LUT (12 uM) and KAE (30uM) increased DCF
fluorescence intensity (H,O, production) as the DCF
peak shifted rightward on the x-axis. The mean of DCF
fluorescence increased from 147.74 (Untreated HCC) to
397.43 (LUT plus HCC), and 147.74 (Untreated HCC)
to 341.40 (KAE plus HCC). These outcomes confirm the
effect of LUT and KAE on mitochondrial ROS forma-
tion. Increased cellular ROS formation is always an
upstream event for apoptosis signaling.

LUT- and KAE-declined MMP

There is growing evidence that changed mitochondrial
function is linked to apoptosis and a declining MMP is
associated with mitochondrial dysfunction. Hence, in the
next step, we assayed the effect of LUT (12 uM) and
KAE (30 uM) on the MMP using the fluorescent probe
Rh 123 and monitored its alteration using flow cytome-
try. The double fluorescence peak observed was indica-
tive of redistribution of Rh 123 into the cytosol and the
collapse of the MMP and depolarization of the mito-
chondrial membrane. As displayed in Figure 5D and F,
the significant (P<0.001) collapse of the MMP was

observed only in the hepatocytes isolated from HCC
group after treatment with ICs, of two mentioned flavo-
noids for 24 h.

LUT- and KAE-induced Mitochondrial Swelling

The results of this study showed that LUT more than
KAE significantly (P < 0.05) decreased the mitochon-
drial swelling at 15 and 30 min of incubation only in the
mitochondria isolated from liver hepatocytes of the HCC
group (Figure 6B). In our study, we used Cacl, (50 M)
as a positive control (MPT inducer) in the mitochondrial
swelling assay.

LUT- and KAE-induced Cytochrome c Release

The process of apoptosis may involve the release of cyto-
chrome ¢ from the mitochondria; this eventually induces
apoptosis by activation of the caspases cascade such as
caspase-3. Treatment of hepatocyte obtained from HCC
group with LUT (12uM) and KAE (30 uM) for 24 h
induced significant (P < 0.05) cytochrome c release into
the cytosol. Furthermore, there was no significant cyto-
chrome c¢ release in the hepatocytes from the normal
group after 24 h of incubation with LUT (12 uM) and
KAE (30 uM) (Figure 7A). Significantly, the pretreatment
of LUT and KAE-treated mitochondria with the MPT
inhibitors like cyclosporine A (CsA, 5 uM) and antioxi-
dants such as butylated hydroxyl toluene (BHT, 5 uM),
inhibited cytochrome c release as compared with LUT
and KAE-treated group (P < 0.05) (Figure 7B). These
results confirm the direct role of oxidative stress and
MPT pore opening in LUT (12 uM) and KAE (30 uM)
induced cytochrome c release in HCC hepatocytes.

Discussion

HCC is a type of cancer of the liver (primary liver can-
cer) with very high mortality and a poor prognosis. HCC
is an important health problem and also studies have
shown that apoptosis signaling is impaired in the HCC
(31,32). The products with naturally origin resource
have been traditionally accepted as treatments because of
the popular opinion that they induce low adverse effects.
LUT and KAE are important members of the flavonoids
family that are present in fruits and vegetables (10,14).
Studies show that flavonoids have a cytotoxic effect on
several cancer cell lines, including prostate, lung, and
colon cancers, but no research so far reported the selec-
tive cytotoxicity of LUT and KAE on hepatocytes and
mitochondria obtained from HCC. In this study, we
tested the cytotoxic effects of LUT and KAE on hepato-
cytes from the HCC rat model. It was shown that two
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Figure 3. Apoptosis induction. Detection of apoptosis by LUT (12 «M) and KAE (30 M) in the hepatocytes isolated from normal and
HCC groups using annexin V/PI staining. Hepatocytes were incubated with LUT (12 «M) and KAE (30 M) for 24 h. (A) Untreated nor-
mal; (B) untreated HCC; (C) normal plus LUT (12 «M); (D) HCC plus LUT (12 xM); (E) normal plus KAE (30 «M); and (F) HCC plus KAE
(30 wM). (G) Four different cell populations were detected after the Annexin V/PI staining of hepatocytes. Q1; the necrotic dead cells,
Q2; the ruptured apoptotic bodies representing the late apoptosis, Q3; the viable cells, Q4; the apoptotic cells representing the early
apoptosis). The results were reported as the mean =+ SD (n = 3).
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Figure 4. Determination of ROS level. Induction of ROS generation by LUT (12 M) and KAE (30 M) in the hepatocytes isolated from
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sity of DCF. (G) Mean of fluorescence intensity (DCF). The results were reported as the mean £ SD (n = 3). The stars show that values
were significantly different from the HCC control (untreated HCC) group (***P < 0.01).
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Figure 5. MMP assay. Effects of LUT (12 «M) and KAE (30 «M) on the MMP in the hepatocytes isolated from normal and HCC groups.
Hepatocytes were incubated with LUT (12 ;M) and KAE (30 ©M) for 24 h. (A) Untreated normal; (B) untreated HCC; (C) normal plus LUT
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as the mean = SD (n = 3). The stars show that values were significantly different from the HCC control (untreated HCC) group (***P <
0.01).
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flavonoids were able to induce selective cytotoxicity in
HCC hepatocytes in a dose-dependent manner, and the
order of potency of two flavonoids was; LUT > KAE.
Comparing their structural characteristics, it was sug-
gested that the cytotoxic effects of LUT and KAE on
HCC hepatocytes might be dependent on the position
and substitutions of hydroxyl groups in the compounds
core molecule. Furthermore, to explain the anti-HCC
function of LUT and KAE and its related mechanism, a
series of tests were carried out. In this research, our
results are in full agreement with the previously pub-
lished cytotoxic effect of LUT and KAE against trans-
formed cells (33,34).

It was reported that these compounds can act, under
certain conditions, as pro-oxidants (35). The pro-oxidant
condition depends on the total number of OH groups in
a flavonoid molecule and involvement of free transition
metal ions in oxidation processes and concentration of
flavonoids (36). In this research, we found that LUT and
KAE selectively induced increased ROS generation in the
hepatocytes only from the HCC group. The order of
capability of two flavonoids at increasing ROS in HCC
hepatocytes was; LUT > KAE. These results suggest that
LUT (12 M) in lower concentration compared to KAE
(30 M) can increase ROS generation and induce oxida-
tive stress. This suggests that the position of the hydroxyl
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Figure 7. Cytochrome c expulsion. LUT (12 M) and KAE (30 M) on the cytochrome c expulsion in the normal (A) and HCC (B) mito-
chondria isolated from both groups. As shown in this figure, pretreatment of with BHT (5 «M) and CsA (5 uM) significantly (P < 0.05)
inhibited cytochrome ¢ expulsion in the HCC mitochondria. The amount of expelled cytochrome ¢ in cytosol was assayed using Rat/
Mouse cytochrome c ELISA kit. The results were reported as the mean =+ SD (n = 3). The stars show that values were significantly differ-
ent from the corresponding control (***P < 0.001). *Significant difference in comparison with LUT (12 M) plus HCC and KAE (30 ;M)

plus HCC (P < 0.001).



group and concentration may influence the ROS genera-
tion. Many studies have shown that several mitochon-
dria-targeted drugs have a selective potency to kill cancer
cells (oxidation therapy) with no effect on normal cells
in preclinical and clinical testing. It has been shown that
cancer cells in comparison with normal cells are more
vulnerable to irreversible damages induced by oxidative
stress and subsequent apoptosis. Recently many
researchers in anti-cancer drug development used the
differences between the mitochondria of cancerous and
normal cells to find a mean to kill cancer cells selectively
(37). Furthermore, several reports showed that ROS are
involved in triggering apoptosis signaling in cancer cells.
Specifically, it was reported that the drug-caused cancer
cell apoptosis has resulted from increased ROS genera-
tion in targeted tumor cells (38). Our results from the
parameters of mitochondrial toxicity showed that LUT-
and KAE-induced significant alteration in the mitochon-
drial swelling. This alter is a result of increased genera-
tion of ROS.

On the other hand, some evidence has shown that
ROS might increase decline in MMP during drug-caused
cancer cell apoptosis (38). The decrease of MMP (AW,,)
after stimulus disrupts outer mitochondrial membrane,
and therefore leads to cytochrome c release from mito-
chondria and induces apoptosis (39). We found that after
adding LUT and KAE to the hepatocytes and mitochon-
dria isolated from the HCC group, the MMP and cyto-
chrome ¢ was decreased and increased, respectively. In
agreement with other published studies, a decline of
MMP and increase of ROS generation and as well as
cytochrome c release were recognized as expected tumor
cell response to LUT and KAE (33,34,40). Our results
also confirmed that LUT and KAE can decrease MMP
and trigger cytochrome c release into the cytosol in HCC
hepatocytes. However, LUT and KAE did not induce any
expulsion of cytochrome c¢ and decrease of MMP in
mitochondria obtained from normal hepatocytes. Inter-
estingly, pretreatment of HCC mitochondria with CsA
and BHT inhibited LUT and KAE induced expulsion of
cytochrome c, indicating that the mitochondrial perme-
ability transition caused by LUT and KAE is permeability
transition pore complex mediated. Furthermore, the
release of cytochrome c contributes to the activation of
caspase-3, a final mediator of apoptosis (39). The order
of potency for two flavonoids at decreasing of MMP and
subsequent cytochrome c release from mitochondria
into cytosol was: LUT > KAE in the hepatocytes isolated
from HCC group.

To investigate the involvement of caspases cascade in
apoptosis pathway, we detected the activity of caspase-3
in LUT and KAE treated hepatocytes obtained from
HCC group. Our results showed that LUT and KAE
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could activate caspase-3. This suggests LUT and KAE
can induce apoptosis through a mitochondria-dependent
pathway. The order of LUT and KAE to activate cas-
pase-3 was: LUT > KAE in the hepatocytes isolated
from HCC group. Apoptosis plays an important role in
regulating cell number in numerous developmental and
physiological and pathological conditions (1). In the eti-
ology of most malignant tumors defect in apoptosis sig-
naling has been reported. So, investigating drugs that
induce apoptosis in tumor cells has become a target for
the development of anticancer drugs (41-44). Mitochon-
drial targeting is the main gateway for design and devel-
opment of anti-cancer drugs causing tumor cell
apoptosis (1).

Our results showed that LUT- and KAE-induced apo-
ptosis only in hepatocytes isolated from HCC but the
not normal group. The induction of apoptosis is subse-
quent to the decrease of MMP, cytochrome ¢ expulsion,
and caspase-3 activation. The order of efficacy of LUT
and KAE at inducing apoptosis was: LUT > KAE in the
hepatocytes from HCC group. Our results showed that
ROS-mediated MMP collapse is the initiating step in the
LUT- and KAE-induced apoptosis in the hepatocytes
obtained from HCC group.

Conclusion

In conclusion, our results showed that LUT and KAE
selectively induced apoptosis signaling via the mitochon-
drial-dependent pathway in hepatocytes from the HCC
rat model by targeting upstream events including the
increase of ROS generation, the decrease of MMP, swell-
ing of mitochondria, the release of cytochrome c and
finally enhancing the activity of caspase-3 in cytosol.
Also, the change of MMP can lead to burst of ROS,
which in turn will aggravate the loss of MMP. Finally,
for future studies we suggest that more precise mechanis-
tic and clinical trials studies be conducted to evaluate the
anticancer effects of LUT and KAE.
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