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A B S T R A C T

Background: Honokiol ((3′,5-di-(2-propenyl)-1,1′-biphenyl-2,2′-diol), a lignan, is a promising antitumor com-
pound, having exerted activity against a number of human cancer cell lines. Honokiol has inhibitory role on the
proliferation, invasion and survival of cancer cells in in vitro as well as in vivo studies. It interferes with signaling
pathways components in order to elicit the anticancer effect.
Scope and approach: In present review, the published data on the efficacy of honokiol against various cancer cell
lines and tumor-bearing animal models has been presented and discussed.
Key findings and conclusions: Honokiol lowers the expression of pluripotency-factors, the formation of mam-
mosphere, P-glycoprotein expression, receptor CXCR4 level, c-FLIP, steroid receptor coactivator-3 (SRC-3),
Twist1, matrix metalloproteinases, class I histone deacetylases, H3K27 methyltransferase among numerous other
anticancer functions. It increases bone morphogenetic protein 7 (BMP7), Bax protein, among others. It does so by
interfering with the major checkpoints such as nuclear factor kappa B (NF-κB), and activator of transcription 3
(STAT3), mammalian target of rapamycin (m-TOR), epidermal growth factor receptor (EGFR), Sonic hedgehog
(SHH). It promotes the efficacy of several anticancer drugs and radiation tolerance. The derivatization of hon-
okiol results in compounds with interesting attributes in terms of cancer control. This review will shed light on
the scopes and hurdles in the relevance of the bioactive lignan honokiol in cancer management.

1. Introduction

Honokiol (3,5-di-(2-propenyl)-1,1-biphenyl-2,2-diol) is a phenyl-
propanoid molecule, a biaryl-type lignan, present in the genus Magnolia
[1,2]. It is present in all parts of the Magnolia genus such as bark,
phloem, wood, leaf blades, and petioles. It has been detected in the
species M, obovata, M. officinalis, M. grandiflora, and M. dealbata. In M.
officinalis powder, the amount of honokiol ranged from 17 to 19mg/g.

Magnolia bark extracts have been in usage as traditional herbal
medicines in Korea, China and Japan, among other countries [3]. Wide-
ranging pharmacological activities of honokiol are emerging. Honokiol
has neuroprotective function [4]. It suppressed the production of
prostaglandin E2 and cyclooxygenase-2 (COX-2) level in the brain of
mice, ameliorating neuroinflammatory processes [5]. Neonatal rats,
when injected with honokiol (10mg/kg), acute pain response was

subdued [6]. It exerted anti-inflammatory effect by targeting Lyn kinase
in human neutrophils [7]. Honokiol inhibited collagen-induced arthritis
by negating pro-inflammatory cytokines and matrix metalloproteinases
and blocking oxidative tissue damage [8]. A study found that honokiol
inhibits the replication, viral gene expression, and endocytotic process
of dengue virus (DENV-2) [2]. The application of 25mg/kg honokiol to
guinea pig models lowered the testosterone level as compared with
letrozole [9].

Its apoptosis induction and malignancy control role has received
much attention in recent times.It has shown various degree of efficacy
towards pancreatic cancer, prostate cancer gastric cancer, oral cancer,
glioblastoma or brain cancer, skin cancer, ovarian cancer, bone cancer/
osteosarcoma [10], chondrosarcoma, lung cancer, nasopharyngeal and
thyroid cancer, blood caner, liver cancer, colon cancer, bladder cancer.

Honokiol reduced tumor growth in SKMEL-2 and UACC-62
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melanoma xenografts in mice [11]. Honokiol pretreatment of cervix
squamous carcinoma A431 cells induced apoptosis and DNA fragmen-
tation. At 50 μmol/L dose, G0/G1 cell cycle arrest occurred [12].
Honokiol inhibited the migration of urinary bladder cancer cells [13];
oral squamous cell carcinoma cells [14]; bladder tumor [15]; colon
cancer [16]; and thyroid cancer [17]. Mice glioma could be treated
with honokiol-induced autophagy [18].

2. Anticancer mechanisms of honokiol

Cancer is an heterogenous disease, manifesting in multiple subtypes.
The initiation and progression of cancer is found associated both with
epigenetic as well as genetic aberrations, which dysregulate key cell
signaling pathways. Be that melanoma, glioma, renal cancer, hepatic
cancer or any other tissue-specific cancer, the problem is the same.
Oxidative stress and high inflammation l [19] lead to acidosis [20–22]
and hypoxia [23]. As a result, aromatase enzyme goes into an overdrive
[24], and excess estrogen is produced [25]. Excess expression of es-
trogen receptors result to capture the estrogen. So, honokiol’s response
towards any of those cancers is mediated by the same mechanisms. The
selected anticancer pathways of honokiol has been discussed below.

Honokiol scavenges superoxide as well as peroxyl radicals. This
antioxidative property is responsible for antitumor response, as NF-κβ
(nuclear factor kappaB) is stimulated by reactive oxygen species (ROS)
[26]. NF-κβ activation creates a gamut of inflammatory components
such as MMP-9, TNF-α, IL-8, ICAM-1 and MCP-1, among others
[27,28]. Metastatic role of the proteolytic enzymes MMP-9 and the
proangiogenic factors IL-8 is well-validated [29]. So, carcinogenesis can
be prevented in its absence. Honokiol suppressed NF-kB activation, by
inhibiting the nuclear translocation and phosphorylation of p65 sub-
unit. Also, it enhanced TNF-α -induced apoptotic cell death [27].
Honokiol can reduce hypoxia-inducible factor-1α (HIF-1α) protein level
and suppressing the hypoxia-related signaling pathway. HIF-1α is a key
mediator of for the adaptation of cancer cells to low oxygen levels [30].
As hypoxia promotes tumor, anticancer role of honokiol is under-
standable [31].

Honokiol significantly inhibited the calcineurin inhibitor cyclos-
porine A-induced survival of renal cancer cells, by downregulating
VEGF (vascular endothelial growth facto) and HO-1 (heme oxygenase-
1) [32]. VEGF is an angiogenic factor and is up-regulated in tumors for
mediating autocrine signaling pathways [33]. Receptor tyrosine kinase
c-Met can promote cancer growth by inducing differentiation, pro-
liferation, cell cycle, motility, and apoptosis, through the regulation of
HO-1 [34]. HGF (hepatocyte growth factor) is a ligand for c-Met, and
excess c-Met expression in gastric cancer and lung cancer has been
observed [35,36]. So, honokiol is likely to be interfering with the kinase
function. Honokiol’s role in inhibition of STAT3 (signal transducers and
activators of transcription 3) activation in hepatocellular carcinoma
(HCC) cells by the interference of upstream kinases such as c-Src, Janus-
activated kinase 1 (JAK 1), and Janus-activated kinase 2 (JAK 2) is
well-known [37]. Constitutively activated STAT3 levels are correlated
with cellular transformation and aggressive cancer forms [38]. c-Src
kinase over-expression transforms cell phenotypes imparting ancho-
rage-independent growth and tumorigenicity [39]. The interaction of
honokiol with another oncogenic transcription factor FOXM1 and
subsequent inhibition has been explained to result in anticancer effect
[40]. The induction and overexpression of FoxM1 by Ras, results in
malignancies [41].

Honokiol is capable of suppressing high-glucose-induced in-
flammatory responses of human renal mesangial cells [42]. The ab-
normal glucose metabolism, hyperglycemia, and cancer link has been
proven [43]. Persistent hyperglycemic condition fuels NF-κβ activation
which leads to the expression of a number of cytokines, chemokines and
cell adhesion molecules [44].

Honokiol also reduces the effect of extracellular signal-regulated
kinase (ERK) activation, protects mitochondrial respiratory chain (ETC)

enzyme, and inhibits protein kinase C (PKC) and NADPH oxidase ac-
tivities. It leads to the accumulation of cells in the G2/M phase of the
cell cycle and elevates the level of caspases and Poly (ADP-ribose)
polymerase (PARP). Honokiol induced the apoptosis of hepG2 human
hepatocellular carcinoma cells by activating p38 MAPK pathway and
subsequent caspase-3 [45]. It down-regulates the expression of cyclin
D1, cyclin D2, Cdk2, Cdk4 and Cdk6 proteins and up-regulates the
expression of Cdk's inhibitor proteins p21 and p27 [12].

It prevented the invasion of urinary bladder cancer cell by the
downregulation of steroid receptor coactivator-3 (SRC-3), matrix me-
talloproteinase (MMP)-2 and Twist1 [13]. So, it suppressed epithelial-
mesenchymal transition (EMT) by the induction of E-cadherin and re-
pression of N-cadherin [13]. Honokiol inhibited EMT-driven migration
of human NSCLC cells in vitro by targeting c-FLIP [46]. Twist1, a basic
helix-loop-helix domain-containing transcription factor, promotes
tumor metastasis, by inducing EMT. Twist1 is upregulated by multiple
factors including SRC-1, STAT3, MSX2, HIF-1α, integrin-linked kinase,
NF-κB [47], and it uses PDGFRα as its transcriptional target [48].
Modulators of Twist1 are regarded as promising therapy for metastatic
cancer, and honokiol merits investigation in this context.

When applied to neuro-2a cells, honokiol selectively induced DNA
fragmentation and cell apoptosis by increasing the expression of the
proapoptotic Bax protein and its translocation from the cytoplasm to
mitochondria. It induced the activation of caspases-9, -3, and -6, which
led to the apoptosis of neuroblastoma cells [49]. Honokiol induced
autophagy of glioma cells (human glioma U87 MG) and neuroblastoma
cells through the ROS-mediated regulation of the p53/cyclin D1/CDK6/
CDK4/E2F1-dependent pathway, p53/PI3K/Akt/mTOR signaling
pathway and endoplasmic reticular stress/ERK1/2 signaling pathways
and suppressing cell migration [18,50,51]. Autophagy markers such as
Beclin-1 and LC3-II have been observed after the lignan treatment.
Beclin-1, the macroautophagy protein, forms part of the phosphatidy-
linositol-3 kinase complexes which tag membranes for autophagosome
generation, and subsequent union with lysosomes [52]. Blood-brain
barrier (BBB) integrity is important for nervous system homeostasis.
Cancer cells often escape the drugs by exploiting this barrier. Hono-
kiol’s ability to traverse the BBB is emerging [51]. If the drug can also
cross the BBB, it can inhibit the cancer [53]. Honokiol suppresses the
migration of highly metastatic renal cell carcinoma (RCC) through the
activation of RhoA/ROCK (Rho-associated protein kinase)/MLC
(phosphorylated myosin light chain) signaling [54].

This lignan can control bladder tumor growth by suppressing on-
coprotein EZH2 (Enhancer of zeste homolog 2), a histone H3K27 me-
thyltransferase [15]. Histone modification can lead to the change in the
chromatin architecture, affect transcriptional regulation and cause
cancer [55]. It also induces caspase-dependent apoptosis in B-cell
chronic lymphocytic leukemia (B-CLL) cells [56]. This lignan down-
regulates c-FLIP (cellular-FLICE inhibitory protein), an anti-apoptotic
regulator, by increasing its degradation by ubiquitin/proteasome-
mediated mechanism, which modulates the death receptor-induced
apoptosis [57]. c-FLIP can inhibit cell death mediated by the death
receptors Fas, DR4, DR5, and TNF-R1 [58]. So, honokiol might be
exploited to inhibit c-FLIP, the apoptosis inhibitor. Honokiol might be a
potential treatment for t(8;21) translocation leukemia as it can target
AML1-ETO oncoprotein, a chromosomal translocation product, by in-
creasing the expression of UbcH8, an E2-conjugase [59]. The t(8;21)-
encoded AML1-ETO chimeric product leads to anomalous hemato-
poietic cell proliferation [60]. So, the abolition of this fusion product by
honokiol holds prospect for leukemia therapy.

Honokiol upregulates the expression of bone morphogenetic protein
7 (BMP7) in colon cancer cells, which plays role in the activation of p53
[16]. BMP7 are transforming growth factor-beta superfamily cytokines
secreted by bone stromal cells and are involved in Smad signaling [61].
These proteins can lead to vascular calcification, and control gastric
cancer progression [62]. They can prevent recurrent metastatic disease
like prostate cancer stem-like cells on bones [63]. BMP7’s role in cancer
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inhibition is via the activation of p38 mitogen-activated protein kinase,
increased expression of the cell cycle inhibitor p21, and the metastasis
suppressor gene NDRG1 (N-myc downstream-regulated gene 1) [63].
Also, honokiol targets SW480 colon cancer stem cells by inhibiting the
γ-secretase complex and the Notch signaling pathway [64]. Honokiol
induces cell cycle arrest and apoptosis induction on acute myeloid
leukemia by inhibiting class I histone deacetylases [65].

Honokiol markedly decreased the expression of cyclins (D1 and E)
and cyclin-dependent kinases (Cdk2 and Cdk4), increased Cdk in-
hibitors, p21 and p27, enhanced of Bax/Bcl-2 and Bax/Bcl-xL ratios in
pancreatic cancer cells [66]. Honokiol-treated pancreatic cancer had
retarded tumor growth and metastasis due to the downregulation of
CXCR4 and SHH (Sonic hedgehog) by the lignan, causing muted tumor-
stromal cross-talk [67]. CXCR4 is a G protein-coupled receptor (GPCR)
for CXCL12 chemokine, and it mediates the proliferation, survival,
migration, and homing of cancer cells [68]. HER2 (human epidermal
receptor 2) enhances the expression of CXCR4 by stimulating CXCR4
translation and attenuating CXCR4 degradation [69]. It is increasingly
being acknowledged that the molecules targeting CXCR4 can be cancer
therapeutics. Chemotherapy resistance is a major obstacle in successful
oncotherapy, which is largely due to abundant efflux protein expression
on the cancer cell membranes. Honokiol downregulated the expression
of P-glycoprotein in MCF-7, leading to drug accumulation, and in-
creased sensitivity of cancer cells [70]. Low extracellular pH, due to
intracellular calcium levels and inhibition of PKC, enhance the higher
expression of P-glycoprotein [71]. The lignan lowering the drug efflux
pump expression might be dose- and variable-dependent, and the result
might not replicate in vivo. The administration of honokiol with poor
soluble P-glycoprotein substrate sirolimus for oral delivery is being
considered [72]. SHH plays role in the formation of desmoplasia in
pancreatic cancer [73], and SHH signaling pathway is involved in
medulloblastomas [74]. Honokiol acts as the agonist of both retinoid X
receptor (RXR) and peroxisome proliferator-activated receptor gamma
(PPARγ) [75].

Honokiol acts as a radio-sensitizing agent for colorectal cancers
[76]. Radiosensitizers enhance the sensitivity of hypoxic, tumor cells to
the lethal effect of radiations. The lignan might be modulating the
milieu, so that selective absorption of the radiation by the cancer cells
occur. In fact, a number of phytochemicals has been attributed to im-
prove radiation therapy outcomes, by either acting as radiosensitizer to
tumor cells or as radioprotector to normal cells [77]. A plant phenol
thymol protected Chinese hamster lung fibroblast (V79) cells from ra-
diation-induced oxidative stress, and lipid peroxidation, promoting cell
viability [78]. Honokiol is assumed to prevent radiation-induced da-
mage by the same antioxidative mechanism, common to several phe-
nolic compounds [79].

All the above discussed cancer perspectives are summarized along
with their most probable mechanism of action in Table 1. Fig. 1 pre-
sents the structure and biological activities of honokiol.

3. Scopes and hurdles

Honokiol enhances the anticancer effect of oxaliplatin in colon
cancer cells [80]. Honokiol raise the efficacy of anticancer drug im-
atinib against human leukemia cells [81]; lapatinib against HER-2 over-
expressed breast cancer cells [82]; adriamycin (doxorubicin) against
4T1 cells [83]; paclitaxel and doxorubicin against HCC cells [37],
among others. When combined with rosiglitazone had superior growth
inhibitory effect on SK-Hep1 hepatoma cells, which occurred via the
G0/G1 phase-related proteins p21, cyclin D1, cyclin E1, and Rb [75].
While it is encouraging result, the risk of drug-herb adverse reaction is
there. If the lignan hampers or modifies the intended effect of the drugs
need to be probed.

4. Efficacy enhancement of Honokilol

Honokiol is a lipophilic compound. While patient tolerance of
honokiol is its merit, its water insolubility compromises its efficacy.
Also, pharmacokinetics of honokiol in rats has been studied by in-
travenous injection of this lignan, and subsequent blood analysis, which
showed quick distribution and rapid decrease [84]. From another rat
model study, it came forth that the elimination of honokiol in liver,
kidney and brain was more rapid than in plasma [85]. In another
pharmacokinetics study on nude mice bearing RKO-incubated tumor,
honokiol was absorbed quickly following intraperitoneal injection, and
was maintained in plasma for more than 10 h [86]. To enhance the
stability and bioavailability of honokiol, it is processed as honokiol-in-
HP-β-CD-n-liposome. So, pegylated liposome (PEGL) is used to en-
capsulate honokiol. PEGylated liposomal honokiol improves the solu-
bility, and drug concentration in plasma, while reducing clearance rate
[87]. Pharmacokinetic study has revealed that honokiol-in-HP-β-CD-in-
liposome has longer residence time in circulating system than the un-
treated honokiol [87]. Honokiol-loaded polymeric nanoparticles was
tested against nasopharyngeal carcinoma [88]. The co-delivery of pa-
clitaxel and honokiol by pH-responsive polymeric micelles for the
suppression of multidrug resistance (MDR) and metastasis of breast
cancer cells was studied [89]. Liposomal honokiol combined with cis-
platin synergistically target colon cancer models [90] as well as ovarian
carcinoma [91].

Structural modification of honokiol to develop more effective ana-
logues to control cancer has been studied, confirming a structure-ac-
tivity connection [92]. Honokiol derivative 5-formylhonokiol possesses
strong inhibitory activity against K562 (human myelogenous leu-
kemia), A549 (human lung adenocarcinoma) and SPC-A1 (human lung
adenocarcinoma) tumor cell lines [93]. On several tumor cell lines, 5-
formylhonokiol exerted better anti-angiogenesis capacity than hono-
kiol, by the downregulation of the ERK signal pathway [94]. Some
other honokiol derivatives include 3′,5-Diallyl-2,4′-dihydroxy-[1,1′-bi-
phen-yl]-3,5′-dicarbaldehyde, butyrate ester derivative of honokiol
with unsubstituted phenol group, 4′-O-methylhonokiol, honokiol posi-
tion isomers. Table 2 presents the honokiol derivatives and their ther-
apeutic potential.

5. Discussion

Irrespective of the heterogeneity and tissue specific-behavior, most
cancers are resultant of acidosis, hypoxia, inflammation, enzyme acti-
vation, and estrogen dominance. Cancer mitigation lies in raising the
pH and lowering the estrogen level. From literature review of different
in vitro paradigms, it was clear that honokiol mediates cancer inhibi-
tion via the same ERK, Akt/mTOR, p38, and JNK pathways.

The in vitro-derived results on the cancer control ability of honokiol
are promising but biased interpretations. It is increasingly being ac-
knowledged that it is the milieu which regulates the fate of cancer. If
the enzyme is aberrant activated and endocrine system is disrupted,
cancer turns aggressive. In the in vitro system, there is no effect of
immune system, so the results are more likely to be positive, yet mis-
leading. But, in in vivo or human system, there are numerous enzymes
to metabolize honokiol, rendering it ineffective. Even if honokiol is
effective on certain cancer, it is mostly by its structural similarity to
estrogen. So, this phenol might be acting as agonist or antagonist of
estrogen. In fact, reports exist to conform that lignans inhibit aromatase
enzyme activity in human pre-adipose cell culture system [95]. Also, it
is biochemically a lignan. Lignan from soy, flaxseed, and sesame are
often considered phytoestrogen [96]. Dietary lignans are metabolized
by gut flora into enterolactone and enterodiol. Secoisolariciresinol,
matairesinol, lariciresinol and pinoresinol are some of the enterolignan
precursors [96]. Plant lignans have been considered as SERM (selective
estrogen receptor modulators), to tame excess estrogen, the cause of
carcinogenesis. So, the role of lignans in cancer is dual and conflicting.
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Table 1
Anticancer perspectives of honokiol.

Cancer types Mechanisms

Breast Inhibited tumor growth rate, induced apoptosis, and decreased microvasculature density
Increased LKB1 expression, and suppressed individual cell-motility Reduced expression of pluripotency-factors, formation of mammosphere, and aldehyde
dehydrogenase activity
Activated the AMP-dependent protein kinase (AMPK)
Inhibited the expressions of pluripotency factors (Nanog, Oct4, and Sox2)
Suppressed the STAT3-phosphorylation
Induced apoptosis, inhibited cell growth, and caused cell cycle arrest
Suppressed the epithelial-mesenchymal-transition, and mammosphere-formation
Decreased levels of Oct4, stemness factors, and Nanog
Enhanced the expression and cytoplasmic-localization of LKB1 Increased miR-34a in LKB1-dependent manner
Inhibited EMT, nuclear-localization and Zeb1 expression, expression of stemness factors and mammosphere-formation
Inhibited TNF-α-induced Nur77 mRNA expression
Inhibited the expression level of Mucin 1 and multidrug resistance proteins

Pancreatic Reduced the desmoplasia, and expression of C-X-C chemokine receptor type 4 and sonic hedgehog
Lowered the levels of cyclins D1, E and cyclin-dependent kinases (Cdk2 and Cdk4)
Decreased the phosphorylation of kappa B alpha (IκB-α) inhibitor

Prostate Decreased levels of mRNA expression and phosphorylated c-Myc protein1
Lowered Cyclin D1 and increase Zeste Homolog 2
Inhibited the cell viability, androgen receptor signaling
Suppressed the androgen receptor stimulation
Down regulated AR protein
Decreased expressions of Bcl-xL as well as Mcl-1 proteins
Induced apoptosis, apoptotic DNA fragmentation

Gastric Down regulated the expressions of cdc25C, CDC2, and Cyclin B1, Increased Bax expressions, and up regulated p-cdc25c, p 21 & 53, and p-CDC2 expressions
Activated the endoplasmic reticulum (ER) stress and down regulated the peroxisome proliferator-activated receptor-γ (PPARγ) activity
Enhanced cytokeratin-18, endoplasmic reticulum (ER) stress, and E-cadherin
Lowered vimentin, and Snail expressions
Decreased the vessel density, reversed epithelial-to-mesenchymal transition
Inactivated nuclear factor kappa-light-chain-enhancer of activated B cell

Oral Inhibited Akt, JAK2/STAT3, and Erk signaling pathways
Suppressed tumor growth and IL-6 level
Lowered the levels of PCNA and endothelial marker CD31
Decreased levels of EGFR, and mTOR
Suppressed tumor growth, and decreased expressions of Cdks and cyclins
Suppressed transcription factor specificity protein 1 (Sp1)
Up regulated p21 and p27, and reduction of anti-apoptotic proteins including surviving and Mcl-1 were reported after supplementation of honokiol

Skin Inhibited COX-2 activity, PGE2 production, and suppressed UVB-induced DNA hypermethylation
Attenuated protein kinase B, and activated AMP-activated protein kinase (AMPK) signaling
Lowered tumor multiplicity, and induced apoptosis
Decreased cell viability, cell growth, & survival rate
Modulated cell cycle regulatory proteins
Decreased the production of expressions of IL-1α and IL-8

Glioblastoma Inhibited cell migration, and activated PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways
Down regulated the expressions of Hes1 and Notch3
Reduced cell viability, and induced apoptosis
Induced G1 cell cycle arrest and increased phosphorylation levels of p21 and p53
Down regulated cyclin D1, E2F1, and phosphorylated (p)RB, CDK4, and CDK6
Induced apoptosis, reduced the cell viability, triggered intracellular Ca (2+) concentration ([Ca(2+)]i)
Lowered mitochondrial membrane potential, activated caspase-9/caspase-3, and released cytochrome c

Ovarian Altered Bcl-2 members and caspase-3
Bone Decreased the number of macrometastases

Up regulated Bax and Bak, and enhanced expression and activities of glucose-regulated protein 78 (GRP78)
Renal Activated the signaling of phosphorylated myosin light chain

Down-regulated Ras activation and c-Met phosphorylation
Inhibited the expression of calcineurin inhibitor (CNI)-induced HO-1, promoted apoptosis

Lung Induced endoplasmic reticulum (ER) stress and autophagy
Protected from the increment of migration, c-FLIP, N-cadherin (a mesenchymal marker), snail (a transcriptional modulator), p-Smad2/3 expression
Induced autophagy and up regulated the Sirt3

Blood Lowered the activity of histone deacetylases, and suppressed the clonogenic activity of hematopoietic progenitors
Induced caspase-dependent cell death, and activated caspase-3, -8, and -9
Up-regulated the Bcl2-associated protein (Bax)

Liver In SK-Hep1 hepatoma cells, honokiol has been found to activate PPARγ, induce cell cycle arrest in the G0/G1 phase, exhibit growth inhibition, decrease cyclin D1,
E1, and Rb expressions, and increases p21 level (Chen et al., 2016).
Suppressed Janus-activated kinase 1, upstream kinases c-Src, and Janus-activated kinase 2

Colon Up regulated the expression of bone morphogenetic protein 7 (BMP7)
Decreased prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels
Inhibited expressions of COX-2, AKT/p-AKT, VEGF, extracellular signal-related kinase (ERK)1/2/p-ERK1/2
Reduced endothelial cell density (CD31 staining), and elevated levels of apoptosis (TUNEL staining)

Bladder Suppressed the epithelial-mesenchymal transition
Induced E-cadherin and repressed N-cadherin
Down regulated the cell invasion-associated genes, MMP-2, steroid receptor coactivator-3 (SRC-3), and Twist1
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Apart from honokiol, M. officinalis produces another biphenolic
compound magnolol, isomer of honokiol, known to possess antioxidant
and anti-inflammatory properties [97]. Lignan mixture (wikstromal,
matairesinol and benzylbutyrolactol) from Cedrus deodara has apop-
tosis-inducing effect towards several cancer cell lines [98]. Podophyllum
hexandrum [99] and Linum album [100] have an aryltetralin lactone
lignan podophyllotoxin. Podophyllotoxin is an anticancer agent and it
used to semisynthetically derive anticancer drugs etoposide, teniposide
and etopophose [99]. All the lignans with anticancer potential act by
shrinking the tumor, and lowering the expression of estrogen, insulin
growth factor, VEGF and MMP enzymes, but enhancing caspase-3
[101].

Other plant phenol such as eugenol has breast cancer treatment
potential, via the interference with E2F1/surviving [102]. So, a number
of plant phenols exert cancer anti-proliferation by the same pathways.
Ellagic acid activates cdk inhibitory protein p21, causing cell cycle
arrest at G phase, in cervical carcinoma (CaSki) cells [103]. So, most
plant phenols reduce oxidative stress, and mitigate inflammation,
lowering cancer risk. Studies have shown that α-santalol, when com-
bined with honokiol and magnolol can inhibit skin cancer. So, not only
honokiol, but plant phenols from different origins can exert anticancer
effect [104]. The therapeutic potential lies in their ring structure, which
is related to estrogen. Apart from lignans, other class of plant secondary
metabolites such as alkaloids, glucosides, terpene, terpenoids, flavones,
coumarins have also intervene in carcinogenesis by acting as different
steps of the same cancer propagation pathways [105].

The dosage and the administration route play important role in the
therapeutic efficacy of almost all therapeutic agents, including

honokiol. Because drugs are toxic, and they must tread the fine balance
between efficacy and safety. Further, there is no universal dosage for all
patients, as age, gender, comorbidity and other medical history must be
taken care of. Additional studies on human subjects can shed light on its
potential for health care. There are abundant bioactive phytochemicals,
but the real challenge lies in retaining their stability. Also, the pro-
mising results might be the resultant of poorly-designed studies. As long
as the inflammatory agents are not eliminated, and hormonal im-
balance is not corrected, a phytochemical ca not resolve a complex
disease like honokiol.

6. Conclusion

Honokiol has attracted research and clinical attention for its im-
mune elicitation and cancer regulation properties. It intervenes the
critical pathways as STAT3, NF-κB, mTOR, EGFR, MAPK, SHH among
several others. It induces apoptosis, suppresses the proliferation, ex-
pression of cancer stem cell marker protein, P-glycoprotein number
reduction, and radiosensitization. Its implication in cancer therapy is
still in budding stage, and clinical trials on this lignan ought to be
pursued. Further research undertakings can shed light on the mechan-
istic pathways of cancer inhibition.
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Fig. 1. The structure and biological activities of honokiol.

Table 2
Honokiol derivatives and their therapeutic potential.

S. No Compound Therapeutic potential

1 5-Formylhonokiol
3’- Formylhonokiol
3’, 5-Diformylhonokiol

Showing strongest inhibitory activity against K562 (human myelogenous leukemia), A549 (human lung
adenocarcinoma) and SPC-A1 (human lung adenocarcinoma) tumor cell lines

2 3′,5-Diallyl-2,4′-dihydroxy-[1,1′-biphen-yl]-3,5′-
dicarbaldehyde

inhibit the newly-grown segmental vessels from the dorsal aorta of zebrafish
exhibit more potent growth inhibitory effects on human umbilical vein endothelial cells (HUVECs), A549, HepG2,
and LL/2

3 A butyrate ester derivative of honokiol with
unsubstituted phenol group

Play a vital role in the antiproliferative activity and identified an interesting pharmacological lead against
hepatocellular carcinoma

4 4'-O-methylhonokiol (MH) Cannabinoid-(CB2) receptor selective antiosteoclastogenic scaffold
5 Honokiol position isomers Antitumor and antiviral activities, with minimal cytotoxicity
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