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Abstract Rational: Combination therapy to inhibit cancer

stem cells may have important clinical implications. Here,

we examine the molecular mechanisms by which epigal-

locatechin gallate (EGCG), a bioactive polyphenol in green

tea, inhibits the stem cell characteristics of glioma stem-

like cells (GSLCs) and synergizes with temozolomide

(TMZ), a DNA-methylating agent commonly used as first-

line chemotherapy in gliomas. GSLCs were enriched from

the human glioblastoma cell line U87 using neurosphere

culture. Cells were analyzed using flow cytometry, quan-

titative PCR, and western blotting. Compared to U87 cells,

a higher percentage of U87 GSLCs remained in the G0/G1

phase, with downregulation of the cell-cycle protein Cy-

linD1 and overexpression of stem cell markers CD133 and

ALDH1. The drug-resistance gene ABCB1 (but not

ABCG2 or MGMT) also showed high mRNA and protein

expression. The resistance index of U87 GSLCs against

TMZ and carmustine (BCNU) was 3.0 and 16.8, respec-

tively. These results indicate that U87 GSLCs possess

neural stem cell and drug-resistance properties. Interest-

ingly, EGCG treatment inhibited cell viability, neurosphere

formation, and migration in this cell model. EGCG also

induced apoptosis, downregulation of p-Akt and Bcl-2, and

cleaving PARP in a dose-dependent manner. Importantly,

EGCG treatment significantly downregulated P-glycopro-

tein expression but not that of ABCG2 or MGMT and

simultaneously enhanced sensitivity to TMZ. Our study

demonstrates that the use of EGCG alone or in combination

with TMZ may be an effective therapeutic strategy for

glioma.
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Introduction

Gliomas are the most common tumors of the central ner-

vous system (CNS), accounting for more than 30 % of all

malignant CNS tumors. Conventional therapies, including

chemotherapy, play an important role in glioma manage-

ment. Carmustine (BCNU) has been a commonly used

chemotherapeutic agent to treat gliomas for many years

[1]. Recently, temozolomide (TMZ) has been utilized as an

alternative therapy to treat malignant gliomas [2]. How-

ever, the 5-year survival rate of glioma patients is still

fairly low, primarily because these chemotherapy drugs

display little efficacy toward glioma stem-like cells

(GSLCs). Cancer stem-like cells have been reported to be

the only tumorigenic population in GBM, as the unlimited

proliferation potential of these cells supports tumor
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development and maintenance [3]. Thus, appropriate

strategies to eliminate GSLCs may facilitate the identifi-

cation of novel therapeutic approaches for glioma

treatment.

Previous studies have shown that GSLCs overexpress

many drug-resistance proteins, which underlie glioma’s

resistance to conventional chemotherapy agents. These

drug-resistance proteins include ATP-binding cassette

(ABC) and O6-methylguanine–DNA methyltransferase

DNA repair protein (MGMT) [4–6]. ABC transporters, such

as P-glycoprotein (P-gp) and breast cancer resistance protein

(BCRP, also known as ABCG2), stimulate efflux of cyto-

toxic drugs, leading to multidrug resistance. The MGMT

enzyme repairs DNA breakage caused by alkylating agents,

such as TMZ. Downregulating these resistance-associated

proteins reverses drug resistance in multiple cancer cells [7–

9]. Thus, the inhibition of drug-resistance proteins in GSLCs

may be a promising strategy for glioma therapy.

Epigallocatechin gallate (EGCG), a major catechin in

green tea, has chemo-sensitizing effects on a wide range of

malignancies, including inhibition of cancer cell growth,

invasion, angiogenesis, and metastasis [10, 11]. EGCG can

be used to reverse drug resistance; treatment can induce

apoptosis and inhibit expression of P-gp and ABCG2 in

drug-resistant cancer cells of the ovaries, breast, and lung

[12–14]. However, neither the effects of EGCG in GSLCs,

nor its potential mechanisms of action have been evaluated.

In this study, we enriched for GSLCs from the U87 cell line

and characterized their stem-like behavior. Furthermore, we

found that EGCG inhibited the growth of U87 GSLCs and

decreased expression of P-gp, thereby reversing resistance to

TMZ. Thus, this study indicates that EGCG could potentially

be used as a novel drug for the treatment of GSLCs.

Materials and methods

Cell culture

Human glioblastoma cell lines U87, U251, and SHG-44

and the rat glioma cell line C6 were obtained from the

Shanghai Institute of Cell Biology, Chinese Academy of

Sciences (Shanghai, China). All cells were cultured in

Dulbecco’s modified Eagle medium (DMEM; Gibco Life

Technologies, Paisley, Scotland, UK) supplemented with

10 % fetal bovine serum, 100 IU/ml penicillin, and

100 mg/ml streptomycin. Cells were maintained in an

atmosphere of 5 % CO2 at 37 �C.

Neurosphere culture

Glioblastoma cells were plated in a 60-mm dish (Costar

Corning, NY, US) at a density of 5,000 cells/ml in serum-

free DMEM/F12 supplemented with B27 (Invitrogen, San

Diego, CA), 20 ng/ml human basic fibroblast growth factor

(Sigma-Aldrich, Taufkirchen, Germany), and 20 ng/ml

epidermal growth factor (Invitrogen, Carlsbad, CA, USA).

Cells were maintained at 37 �C in a humidified atmosphere

of 95 % air and 5 % CO2. Spheroids were collected after

7 days and dissociated with Accutase (a mixture of

enzymes with proteolytic, collagenolytic, and DNase

activity; Invitrogen, Carlsbad, CA). The cells obtained

from dissociation were filtered through a 40-lm cell

strainer and cell number was quantified with a Coulter

counter using trypan blue dye.

Cytotoxicity assays with Cell Counting Kit-8 (CCK-8)

The effects of BCNU (Tianjin Drug Factory, Tianjin, China),

TMZ (Sigma-Aldrich, St. Louis, MO, USA), Verapamil

(Sigma-Aldrich, USA), and EGCG (Sigma-Aldrich, St.

Louis, MO, USA) were measured using the CCK-8 assay

(Dojindo Laboratories, Kumamoto, Japan). Cells were see-

ded into 96-well plates at a density of 5 9 103 cells per well.

Various doses of BCNU, TMZ, or EGCG were added to each

well 24 h after seeding. Optical density at 450-nm was

measured using a microplate reader (Winooski, VT, USA).

The IC50 value, determined by the relative absorbance of

CCK-8, was assessed using probit regression analysis in

SPSS 13.0 statistical software. The resistance index (RI) was

calculated by normalizing the IC50 of the resistant cell line to

that of the parental cell line [15].

Cell cycle assay

The cells were treated with DMEM without fetal bovine

serum for 24 h, then washed with phosphate buffered sal-

ine (PBS), trypsinized, and resuspended in ice-cold PBS.

The cells were then gently pelleted by centrifugation

(500 g for 5 min at 4 �C), and the supernatant was

removed. Cells were then fixed and permeabilized in 70 %

ethanol at -20 �C. Fixed cells were washed with PBS and

incubated in the dark for 30 min with a propidium iodide

(PI, BD Pharmingen, CA, USA) staining solution con-

taining 50 mg/ml PI and 100 mg/ml RNaseA in PBS. Flow

cytometry analysis was performed using a FACS can flow

cytometer (Becton–Dickinson, CA, USA), and data were

analyzed using Becton–Dickinson Cell Quest software.

Quantitative RT-PCR

Total RNA was isolated using Trizol reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

Quantitative RT-PCR was carried out using a Chromo4

instrument (Bio Rad) and a SYBR� Premix Ex TaqTM kit

(Takara Bio, Otsu, Japan) to detect mRNA. The specific PCR
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primer sequences of these genes, designed using Primer Pre-

mier 5.0 software, were as follows: MGMT forward: 50-CA

CTTCACCATCCCGTTTTCC-30; reverse: 50-TG CTGGT

AAGAAATCACTTCTCC-30; ABCB1 forward: 50-GAGGA

AGACATGAC CAGGTA-30; reverse: 50-CTGTCGCATTA

TAGCATGAA-30; ABCG2 forward: 50-ACCTGAAGGCA

TTTACTGAA-30; reverse: 50-TCTTTCCTTGCAGCTAA

GA C-30; CD133 forward: 50-GCACTCTATACCAAAGCG

TCA-30; reverse: 50-CCAT ACTTCTTAGTTTCCTCA-30;
Nestin forward: 50-GAGCAGCACTCTTAACTTA CGA-30;
reverse: 50-TTCCTACAGCCTCCATTCTTG-30; GFAP for-

ward: 50-CGCTGTTTCCCTATCTTC-30; reverse: 50-AAT

GGGTCGCTGTAATGT-30; ALDH1 forward: 50-CCCGT

TGGTTATGCTCATTT-30; reverse: 50-TGCTCTGC TGGT

TTGACAAC-30; GAPDH forward: 50-GACCCCTTCATT

GACCTCAAC-30; reverse: 50-CTTCTCCATGGTGGTGA

AGA-30. Independent experiments were conducted in tripli-

cate. The cycle threshold (Ct), representing a positive PCR

result, is defined as the cycle number at which a sample’s

fluorescence intensity crossed the threshold automatically

determined by the Chromo4 system. The relative changes in

gene expression were calculated with the 22DDCt method,

where DDCt = (Cttarget gene - CtGAPDH)sample - (Cttarget gene -

CtGAPDH)calibrator.

Western blotting

For western blot analysis [16], the following antibodies

were used: anti-GAPDH, anti-MGMT, anti-a-tubulin, anti-

ALDH1, anti-ABCG2, anti-Bcl-2, anti-Bax, anti-c-PARP,

anti-Akt, and anti-p-Akt (Cell Signaling Technology,

Beverly, MA, USA) at 1:1000; anti-CD133 (BioWorld,

USA) at 1:500; anti-P-gp (Santa Cruz Biotechnology,

California, USA) at 1:400; and HRP-conjugated secondary

antibody (1:5000 dilution; Cell Signaling Technology,

Beverly, MA).

Transwell migration assay

For the transwell migration assays, 5 9 103 cells/ml of

U87 GSLCs were plated in the top transwell chamber (6.5-

mm diameter, 8.0-lm pore size polycarbonate filters;

Corning, NY, USA) and allowed to migrate toward serum-

containing medium in the lower transwell chamber. After

24 h, the cells were fixed with methanol and stained with

0.1 % crystal violet (2 mg/ml). The number of cells

invading through the membrane was counted under a light

microscope.

Immunofluorescent staining

Cells were plated on poly-L-lysine-coated coverslips

(Sigma) and incubated overnight at 37 �C. Cells were

rinsed with PBS and fixed in 3.7 % paraformaldehyde for

10 min. Cells were then washed in PBS three times for

5 min, blocked in 5 % bovine serum albumin for 60 min,

then incubated with anti-P-gp antibody (1:200), anti-

mouse-FITC secondary antibody (1:1000, Cell Signaling

Technology, Beverly, MA), TUNEL reaction mixture

containing a nucleotide mixture and terminal deoxynu-

cleotidyl transferase (TdT) (In Situ Cell Death Detection

Kit, Roche Diagnostics GmbH, Germany) and 40,6-diami-

dino-2-phenylindole (DAPI, Cell Signaling Technology,

Beverly, MA). Finally, the slides were mounted and

examined by laser scanning confocal microscopy (LSM).

Statistical analysis

All experiments were conducted at least three times. Data

from quantitative RT-PCR, IC50 values, and the quantifi-

cation of western blotting results are expressed as the

mean ± standard deviation (SD). Statistical analysis of the

EGCG combined with TMZ data was performed using the

Kruskal–Wallis test, and analysis of all other data was

conducted using a one-way analysis of variance (ANOVA)

in the statistical package SPSS 13.0 (SPSS Inc., USA).

P \ 0.05 was considered to be statistically significant.

Results

Generation of GSLCs from U87 sphere culture

Neurosphere culture is a common and convenient method

to enrich for GSLCs. Glioma cell line U87 is able to

continually divide and form multipotent clonal spheres, so-

called neurospheres, after 7 days in selective serum-free

media. In suspension, glioma cells accumulate to form

globular structures. Neurospheres have a diameter of

150–200 lm. When serum-free medium was replaced with

serum-supplemented medium, neurospheres attached to the

plate and began proliferating after 3 days (Fig. 1a). Other

glioma cell lines (U251MG, C6, SHG-44) also formed

neurospheres in selective serum-free media (Fig. 1a).

However, only U87 GSLCs could be dissociated with

Accutase into a single-cell suspension and subsequently

passaged. These results suggest that GSLCs have the

capacity for self-renewal and differentiation.

U87 GSLCs exhibit neural stem cell properties

As shown in Fig. 1b, c, the cancer stem cell markers

CD133 and ALDH1 were significantly increased in U87

GSLCs compared with U87, whereas the expression of the

astrocyte differentiation marker (i.e., GFAP) decreased.

However, Nestin expression did not change. Similar results
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were observed in C6 GSLCs (Supplementary Fig. 1).

Moreover, a higher percentage U87 GSLCs remained in the

G0/G1 phase, showing the downregulation of cell cycle

protein CylinD1 relative to U87 cells (Fig. 1c, d). These

data indicate that U87 GSLCs have characteristics of

neural stem cells in terms of their cell cycle and elevated

expression of CD133 and ALDH1. Thus, we used this

model to further study the effects of EGCG on GSLCs.

U87 GSLCs express higher levels of P-gp and are

resistant to BCNU and TMZ

The effect of conventional chemotherapy drugs (BCNU

and TMZ) on cell viability in U87 and U87 GSLCs was

examined using a CCK-8 assay (Fig. 2a, b). BCNU IC50

values in U87 and U87 GSLCs were 1.27 and 21.33 lM,

respectively; TMZ values were 260.34 and 766.11 lM,

Fig. 1 U87 GSLCs have the properties of neural stem cells when

enriched in neurosphere culture. a The glioma cell line U87 can form

neurospheres. Neurospheres were developed from a monolayer of

U87 cells after 7 days in serum-free DMEM/F12 with B-27, EGF, and

bFGF supplementation (middle). U87 GSLCs attached to the plate

and proliferated after 3 days in DMEM/F12 supplemented with 10 %

fetal bovine serum (right). Normal U87 cells were used as a control

(left). Scale bars 150 lm. The glioma cell lines C6, SHG-44, and

U251MG can also form neurospheres in selective serum-free media.

b mRNA expression levels of ALDH1, Nestin, CD133, and GFAP

were detected by RT-PCR and normalized against GAPDH in U87

and U87 GSLCs. c CD133, ALDH1 and CylinD1 protein expression

was detected using western blotting and normalized against GAPDH

in U87 and U87 GSLCs (left). The relative fold changes were then

calculated (right). D The cell cycle was detected using a FACScan

flow cytometer in U87 and U87 GSLCs. n = 3. The data represent the

mean ± SD. * Significantly different from the respective controls,

P \ 0.05
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respectively. The resistance index (RI) of U87 GSLCs for

TMZ and BCNU was 3.0 and 16.8, respectively, suggesting

that U87 GSLCs may have characteristics of multi-drug

resistance. Furthermore, we confirmed that the mRNA and

protein expression of the ABCB1 gene was elevated in U87

GSLCs (Fig. 2c, d). A similar result was observed by

Fig. 2 U87 GSLCs were drug-resistant cells relative to U87. a,

b Cell viability was assessed using a CCK-8 assay in U87 and U87

GSLCs treated for 24 h with various doses of BCNU and TMZ.

c mRNA expression levels of MGMT, ABCB1, and ABCG2 were

measured by RT-PCR in U87 and U87 GSLCs. d MGMT, ABCB1 (P-

gp), and ABCG2 protein expression was measured using western

blotting (upper) and normalized against GAPDH in U87 and U87

GSLCs. Relative fold changes were then calculated (bottom). n = 3.

Data represent the mean ± SD. * Significantly different from the

respective controls, P \ 0.05. e The expression of P-gp in U87 and

U87 GSLCs was observed by cell immunofluorescent staining. Blue

fluorescence represents DAPI, and red fluorescence represents P-gp.

Scale bars 50 lm
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immunofluorescent staining (Fig. 2e). However, MGMT

was only upregulated on the mRNA level; based on wes-

tern blot analysis, MGMT protein was not detected in U87

or U87 GSLCs. Additionally, mRNA and protein expres-

sion of ABCG2 did not significantly change in GSLCs

(Fig. 2c, d). These data indicate that U87 GSLCs may be

BCNU and TMZ-resistant, with elevated expression of

P-gp.

EGCG inhibits cell viability, neurosphere formation,

and migration of U87 GSLCs

To investigate whether EGCG could inhibit cell growth in

U87 GSLCs, we examined cell viability following EGCG

treatment using a CCK-8 assay. EGCG IC50 values in U87

and U87 GSLCs were 284.17 lM and 368.83 lM,

respectively; there was no significant difference between

the values (Fig. 3a, b). The RI of U87 GSLCs with EGCG

treatment was 1.3. These data indicate that EGCG may be a

useful agent to target drug resistant U87 GSLCs. When

U87 GSLCs were dissociated in suspension and treated

with EGCG (0–200 lM) for 7 days, we observed a change

in cell morphology. EGCG decreased the viability of U87

GSLCs in a dose-dependent manner (Fig. 3c). These data

indicate that EGCG may be an effective inhibitor of self-

renewal in U87 GSLCs. Additionally, EGCG reduced the

efficiency of sphere formation and migration in U87

GSLCs in a dose-dependent manner (Fig. 3e–g). These

findings were validated in C6 GSLCs (Supplementary

Figs. 2, 3). Our results suggest that the stem-like charac-

teristics of U87 GSLCs can be effectively inhibited by

EGCG.

EGCG induces U87 GSLC apoptosis,

with downregulation of p-Akt, Bcl-2, and PARP

cleavage

To understand the mechanisms underlying the effects of

EGCG on U87 GSLCs, we initially assessed the phos-

phorylation status of Akt. As shown in Fig. 4a, Akt phos-

phorylation was reduced in response to EGCG in a

concentration-dependent manner, but total Akt showed

almost no alteration. Moreover, the glioma stem cell (GSC)

markers CD133 and ALDH1 were downregulated after

EGCG treatment. EGCG was found to upregulate the

expression of the apoptosis-promoting protein Bax,

downregulate the expression of Bcl-2, and increase the

downstream cleavage of PARP in U87 GSLCs (Fig. 4b).

The data indicate that EGCG has inhibitory effects on U87

GSLCs, partly through the induction of apoptosis.

EGCG enhances the sensitivity of U87 GSLCs to TMZ

and downregulates P-gp

To determine whether the inhibitory effects of EGCG were

related to the downregulation of drug-resistance protein,

we measured changes in MGMT, ABCB1, and ABCG2

expression in U87 GSLCs. Our data showed that mRNA

and protein levels of P-gp were reduced in a dose-depen-

dent manner with EGCG treatment (Fig. 4c, d). However,

although MGMT and ABCG2 mRNA expression was

reduced with EGCG treatment (Fig. 4c), protein levels did

not change. We then evaluated if EGCG in combination

with TMZ contributed to the downregulation of P-gp in

U87 GSLCs. As shown in Fig. 5a, U87 GSLCs treated with

EGCG in combination with TMZ had significantly reduced

viability relative to cells treated with EGCG or TMZ alone.

Furthermore, although the protein expression of ABCG2

and MGMT did not change significantly after treatment

with EGCG and TMZ, P-gp expression in U87 GSLCs was

dramatically downregulated (Fig. 5b). A similar result was

observed by confocal immunofluorescence staining

(Fig. 5c). P-gp expression was decreased in the EGCG and

Verapamil (VER) treatment groups relative to the control

group, and more apoptotic cells were detected by TUNEL

assay. There were no differences in P-gp expression or in

the number of apoptotic cells with TMZ treatment. It

obviously reduced the expression of P-gp. Apoptotic cells

were detected in the TMZ ? EGCG treatment group and

the VER ? EGCG treatment group. Apoptotic cells are

indicated by white arrows. Moreover, expression of P-gp in

U87 GSLCs and C6 GSLCs was dramatically reduced

(Supplementary Figs. 4, 5). These results indicate that

EGCG may synergize with TMZ to inhibit P-gp in GSLCs.

b Fig. 3 The inhibitory effects of EGCG on U87 GSLCs include

reduced viability, migration, and neurosphere formation. a, b Cell

viability was tested using a CCK-8 assay after treating U87 and U87

GSLCs with various doses of EGCG for 24 h. c U87 GSLCs were

dissociated with Accutase and filtered through a 40-lm cell strainer.

Cells were then seeded in suspension culture and treated with EGCG

(0-200 lM) for 7 days in 96-well plates. Pictures of neurospheres in

suspension were taken under a microscope. d Cell viability was

measured using a trypan blue assay; the numbers of live cells were

counted under a microscope in five random fields per well. e After

dissociation, U87 GSLCs were seeded in suspension and treated with

EGCG (0–200 lM) for 48 h. Cells were then cultured in serum-free

DMEM/F12 supplemented with B-27, EGF, and bFGF for 7 days to

check sphere-forming efficiency. The number of U87 GSLCs was

counted under a microscope in five random fields per well. Data

represent the mean ± SD. * Different from the respective controls,

P \ 0.05 . f Transwell migration assay. U87 GSLCs at a density of

5,000 cells/ml were plated in the top chamber of the transwell and

treated with EGCG (0–200 lM) for 24 h. Cells that migrated to the

lower chambers were fixed with methanol and stained with crystal

violet. g Cells were counted under a microscope in five random fields

per well. Data represent the mean ± SD. * Different from the

respective controls, P \ 0.05. Scale bars 100 lm
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Discussion

Clinical resistance to chemotherapeutic drugs is a serious

problem in glioma treatment. GSCs are potentially

important because they are likely to express high levels of

drug-resistance proteins and are often responsible for

recurrences after glioma treatment. In this study, we enri-

ched for cells with stem-like characteristics and identified

U87 GSLCs as high expressors of CD133, ALDH1 and

P-gp. Importantly, we show for the first time that EGCG

Fig. 4 EGCG downregulates Akt phosphorylation to modulate the

Akt signaling pathway, stimulates apoptosis in U87 GSLCs, and

downregulates P-gp at the mRNA and protein level. a U87 GSLCs

were dissociated with Accutase and filtered through a 40-lm cell

strainer. The cells were then seeded in suspension and treated with

EGCG (0–200 lM) for 24 h. The expression of Akt, P-Akt, CD133

and ALDH1 was measured using western blotting and normalized

against GAPDH (upper). Fold changes were calculated (bottom).

b U87 GSLCs were treated with EGCG (0-200 lM) for 48 h. The

expression of Bcl-2, Bax, c-PARP, and GAPDH was measured using

western blot analysis (upper). Fold changes were calculated (bottom).

c U87 GSLCs were seeded in suspension and treated with EGCG

(0–200 lM) for 24 h. The mRNA expression levels of MGMT,

ABCB1, and ABCG2 were measured by RT-PCR and normalized

against GAPDH. d The expression of MGMT, ABCB1 (P-gp), and

ABCG2 was measured using western blotting and normalized against

GAPDH (upper). Fold changes were calculated (bottom). Data

represent the mean ± SD. * Different from the respective controls,

P \ 0.05

J Neurooncol

123



Fig. 5 EGCG enhances sensitivity to P-glycoprotein-mediated multidrug

resistance when combined with TMZ in U87 GSLCs. a U87 GSLCs were

seeded in suspension and treated with the control, 100 lM EGCG, 100 lM

TMZ, or TMZ combined with EGCG for 48 h. Cells were then dissociated

with Accutase and treated with trypan blue dye (left). Cell viability was

calculated by counting live cells under a microscope in five random fields per

well (right). Data represent the mean ± SD. * Different from the respective

controls, #,& Significant difference between the two connected objects,

Kruskal–Wallis test, P\0.05. Scale bars 25 lm. b In the same treatment

conditions, MGMT, ABCB1 (P-gp), and ABCG2 expression levels were

measured using western blotting (bottom). Fold changes were calculated

(upper). Data represent the mean ± SD. * Different from the respective

controls, #,& Significant difference between the two connected objects,

Kruskal–Wallis test, P\0.05. c Confocal immunofluorescence staining.

U87 GSLCs were seeded in suspension and treated with control, 100 lM

EGCG, 100 lM TMZ, 50 lM VER, EGCG ? TMZ, or VER ? TMZ for

48 h. Blue fluorescence represents DAPI, red fluorescence represents P-gp,

and green fluorescence represents TUNEL. Apoptotic cells are indicated by

white arrows. Scale bars 50 lm. d Schematic overview of the anti-cancer

action of EGCG alone or in combination with TMZ in U87 GSLCs
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can inhibit GSLC viability, neurosphere formation,

migration and inducing apoptosis. We also demonstrated

that EGCG sensitized GSLCs to temozolomide; this phe-

nomenon was associated with downregulation of P-gp

in vitro (Fig. 5d). These results demonstrate that EGCG

can be used for the management of GSCs.

Several methods are currently in use to establish GSC

models, including neurosphere culture, flow cytometer

sorting based on surface markers, and side population (SP)

assays [17–19]. Normally, these GSCs exhibit character-

istics similar to normal stem cells; this includes remaining

quiescent during the cell cycle as a result of their capacity

for perpetual self-renewal and a wide differentiation

potential [20]. Microenvironmental factors and the activa-

tion of specific signaling pathways are able to sustain the

small population of remaining GSCs [21]. Neurosphere

culture is the most convenient method for enriching GSCs

because it provides a microenvironment that promotes the

proliferation of stem-like cells [22]. Using neurosphere

culture, we enriched for GSLCs from four glioma cell lines

(U87, C6, SHG-44, and U251MG) and found that U87

GSLCs were easier to resuspend with Accutase and more

convenient to subculture (Fig. 1a). In addition, our sup-

plemental results demonstrate that C6 GSLCs were easier

to resuspend with TrypLE Express reagent (another stem

cell digestive enzyme) for subculturing.

Several cancer stem cell markers have been used to

identify GSCs. Recently, a CD133(?) or ALDH1(?)

subpopulation isolated from human brain tumors was

shown to exhibit stem cell properties and thought to play a

pivotal role in brain tumor initiation, growth, and recur-

rence [23, 24]. Likewise, ALDH1 is a common stem cell

marker in many other cancer cells, including malignant

human epithelium, prostate, and colon [25–28]. Addition-

ally, neural stem cells usually remain quiescent by down-

regulating CylinD1 [29]. Consistent with other studies [30],

our results show that U87 GSLCs express CD133 and

ALDH1 at high levels, and remained at the G0/G1 phase

with downregulation of CylinD1; this suggests that we

succeeded in enriching and identifying U87 GSLCs with

the properties of cancer stem cells.

Recent studies have reported that EGCG inhibits several

stem-like cells, including nasopharyngeal, breast, prostate,

and pancreatic cancer stem cells [31–35]. Here, we found

that EGCG reduced both U87 and C6 GSLC viability,

neurosphere formation, and migration (Fig. 3c–g; Supple-

mentary Fig. 3). We also found that EGCG induced

apoptosis in U87 GSLCs by the reducing Akt phosphory-

lation, inactivating anti-apoptotic protein Bcl-2, upregu-

lating the apoptosis-promoting protein Bax, and cleaving

PARP. This result is in agreement with the finding that

EGCG can inhibit PI3K and/or mTOR kinases to target the

PI3K/Akt/mTOR pathway in several cancer cells [36]. The

PI3K/Akt/Bcl-2 signaling pathway plays a critical role in

regulating cellular proliferation and apoptosis [37–39].

Moreover, gliomas are sensitive to apoptosis through the

downregulation of anti-apoptotic Bcl-2 family members

[40, 41]. These data suggest that EGCG may be an effec-

tive agent to target GSLCs associated with inhibition of an

Akt-related pathway.

TMZ is a recently launched anti-glioma drug, but high

expression of resistance proteins reduces its efficacy [42].

In this study, we found that EGCG enhanced the sensitivity

of U87 GSLCs to TMZ and significantly downregulated the

expression of P-gp, but not ABCG2 or MGMT (Fig. 4c, d).

EGCG treatment significantly downregulated transcript

levels of ABCG2 and MGMT, but not protein levels; this is

in contrast to ABCB1/P-gp, suggesting that ABCG2 and

MGMT may be regulated at not only the transcriptional

level but also post-translational and protein stability levels.

Previous studies have shown that MGMT is protective

against cell death induced by alkylating agents, such as

BCNU and TMZ [43]. Our data show that MGMT protein

expression was marginal in U87 and U87 GSLCs, consis-

tent with previous studies [44, 45]. Chen et al. reported that

EGCG enhanced the therapeutic efficacy of TMZ by

inhibiting GRP78 in mouse glioblastoma models [46]. Qian

et al. reported that EGCG modulated the function of P-gp

and reversed multidrug resistance in cancer cells [47]. As

reported, VER and talinolol are substrates of P-gp and

mitoxantrone and topotecan are substrates of ABCG2.

Rhodamine 123 and [3H] daunorubicin are shared sub-

strates of P-gp and ABCG2 [48]. Jodoin et al. suggested

that EGCG was a competitive inhibitor of P-gp [49]. This

P-gp inhibition may be associated with tight binding of

EGCG to the ATP-binding site, resulting in an enhance-

ment of the effects of the substrate of P-gp. Therefore,

EGCG may enhance sensitivity to TMZ by modulating

P-gp and other resistance-associated proteins. We did not

observe downregulation of P-gp with TMZ treatment,

which is inconsistent with the findings of Riganti et al.

[50]. This is possibly because we used TMZ under more

moderate experimental conditions, including lower con-

centrations and shorter treatment times. We found that the

decrease in P-gp expression and increase in apoptosis in the

TMZ ? EGCG group was similar observations our in the

VER ? EGCG group. This suggests that EGCG syner-

gized with TMZ and may be associated with P-gp inhibi-

tion (Fig. 5c; Supplementary Fig. 5). Additional studies in

other GSC cell lines or patients will be necessary to further

explore the synergistic effects of EGCG and TMZ in vitro

and in vivo.

In conclusion, we observed for the first time that EGCG

reduces cell viability and migration in U87 GSLCs. It also

stimulated apoptosis, downregulating Bcl-2, Akt phos-

phorylation, and cleaving PARP in a dose-dependent
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manner. More importantly, EGCG enhanced sensitivity to

TMZ, associated with inhibition of P-gp. This study pro-

vides new insights into GSC-based anti-glioma treatments

and EGCG development.
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