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Abstract

Modulation or prevention of protein changes during the cholangiocarcinoma (CCA) process

induced by Opisthorchis viverrini (Ov) infection may become a key strategy for prevention

and treatment of CCA. Monitoring of such changes could lead to discovery of protein targets

for CCA treatment. Curcumin exerts anti-inflammatory and anti-CCA activities partly through

its protein-modulatory ability. To support the potential use of curcumin and to discover novel

target molecules for CCA treatment, we used a quantitative proteomic approach to investi-

gate the effects of curcumin on protein changes in an Ov-induced CCA-harboring hamster

model. Isobaric labelling and tandem mass spectrometry were used to compare the protein

expression profiles of liver tissues from CCA hamsters with or without curcumin dietary sup-

plementation. Among the dysregulated proteins, five were upregulated in liver tissues of

CCA hamsters but markedly downregulated in the CCA hamsters supplemented with curcu-

min: S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin. Western blot and immuno-

histochemical analyses also showed similar expression patterns of these proteins in liver

tissues of hamsters in the CCA and CCA + curcumin groups. Proteins such as clusterin and

S100A10, involved in the NF-κB signaling pathway, an important signaling cascade involved

in CCA genesis, were also upregulated in CCA hamsters and were then suppressed by cur-

cumin treatment. Taken together, our results demonstrate the important changes in the
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proteome during the genesis of O. viverrini-induced CCA and provide an insight into the pos-

sible protein targets for prevention and treatment of this cancer.

Introduction

Curcumin, a yellow pigment compound found in the plant Curcuma longa L., is a hydrophobic

polyphenol which exhibits a variety of therapeutic properties but principally anti-inflamma-

tory and anti-cancer effects [1, 2]. These effects have been clearly demonstrated in both in vivo
and in vitro experiments using inflammation-linked cancer models as well as in clinical trials

[3–5].

Cholangiocarcinoma (CCA), a malignant tumor originating from biliary epithelium cells, is

a rare cancer in Western countries but is highly prevalent in Southeast Asian countries, espe-

cially in Northeast Thailand (>85 per 100,000 population) [6], where co-occurrence with

small liver-fluke (Opisthorchis viverrini) infection has been observed [7]. Chronic inflamma-

tion caused by infection with O. viverrini is strongly associated with the tumorigenesis [8, 9].

Increased production of reactive oxygen (ROS) and nitrogen species (NOS) by host cells in

response to infection are not only toxic to the parasites but also cause the modification of bio-

molecules such as DNA, proteins and lipids, ultimately leading to CCA tumorigenesis [9].

Chemotherapy using gemcitabine-based regimens represents the first line treatment of unre-

sectable CCA patients since almost all of whom are diagnosed at a late stage and cannot be

cured effectively by surgery [10, 11]. However, gemcitabine treatment results in multiple

adverse events and the disease develops resistance to the drug over time [11]. Hence, using

phytochemical substances with anti-inflammatory and anti-cancer properties could be very

valuable for prevention and treatment of CCA. We have previously reported that dietary

administration of curcumin reduces CCA incidence, retards tumor growth and prolongs the

survival of animals in an in vivo model [12], and also exerts cytotoxicity against CCA cell lines

in vitro [13].

Mechanistically, curcumin exerts anti-CCA activity in part through targeting multiple

oncogenic signaling pathways [13] including nuclear factor kappa B (NF-κB), activator pro-

tein-1 (AP-1), signal transducer and activator of transcription-3 (STAT3) and protein kinase B

(Akt) [2]. These findings support the use of curcumin as an alternative treatment, especially

for CCA. However, establishing these facts requires very extensive and laborious experimental

work using in vitro and in vivo models. Therefore, instead of that, discovering of the critical

proteins and/or signaling cascades that are potential for CCA development and those which

their expression could be modulated by curcumin treatment might be easier and useful

because we can apply “the drug or targeted therapy” to target or interrupt those molecules/sig-

naling pathways. Proteomics is a powerful approach to study changes in the proteome in

response to disease development and to therapeutic intervention. This approach has been

widely used to discover biomarkers for, and therapeutic targets in, a number of diseases

including cancers [14].

Herein, we applied proteomics to identify potential protein targets for development of

novel therapeutics for CCA. As part of a larger study [15], we utilized dietary N-nitrosodi-

methylamine (NDMA) in combination with O. viverrini infection to establish the CCA in Syr-

ian hamsters (Mesocricetus auratus). Some of these hamsters were fed with a curcumin-

supplemented diet. The liver proteome was evaluated using isobaric tags for relative and abso-

lute quantitation (iTRAQ). Following tandem mass spectrometry, 5 proteins were further
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validated by western blotting and immunohistochemistry. This study identified major protein

modulation by curcumin, and points the way towards potential therapeutic targets for CCA.

Materials and methods

Reagents

Curcumin (97% purity) was supplied by Merck-Schuchardt (Hohenbrunn, Germany). Rabbit

polyclonal antibodies against S100A6 (sc50409) and GAPDH (sc25778) were obtained from

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Rabbit polyclonal anti-plastin-2 (ab83496),

14-3-3 zeta/delta (ab51129), vimentin (ab137321) and rabbit monoclonal anti-lumican

(ab168348) were purchased from Abcam (Cambridge, MA, USA). For use as a secondary anti-

body, goat anti-rabbit IgG conjugated with horseradish peroxidase (HRP) was obtained from

ZYMED (Thermo Fisher Scientific Inc., Walthem, MA).

Parasites

Naturally-infected dead cyprinoid fish, important 2nd intermediate hosts of O. viverrini, were

bought from local markets in Khon Kaen Province, Northeastern Thailand. Metacercariae, the

infective stage of O. viverrini, were isolated from the fish using 0.25% pepsin-HCl as described

elsewhere [12]. Metacercariae were examined microscopically to ensure that they were alive

(there was a movement of the worm inside the cyst). Fifty live metacercariae were used to

infect male golden Syrian hamsters (Mesocricetus auratus) as described elsewhere [12].

Experimental design

This study was approved by the Animal Ethics Committee of Khon Kaen University, Thai-

land (AEKKU 22/2557). All surgery and necropsy were performed under ether anesthesia,

and every effort was made to minimize pain and suffering to the animals. The experimental

design is shown in Fig 1. Twenty male hamsters were housed under conventional conditions

(12:12-h light:dark, temperature 25 ± 2˚C), fed with a stock diet and given filtered bottled

water ad libitum. Animals were randomly divided into five groups: normal controls; O.

viverrini-infected and fed NDMA to induce CCA (CCA group); O. viverrini-infected and

fed NDMA and 1% curcumin (CCA+Cur group); O. viverrini-infected only (OV group)

and O. viverrini-infected with 1% curcumin supplementation (OV+Cur group). The proto-

col for CCA induction and administration of a 1% curcumin-supplemented diet has been

described previously [12]. The health of hamsters was checked every 3 days. None of experi-

mental hamsters exhibited severe illness or severe health problems during the study. All

hamsters were anesthetized with diethyl ether inhalation and sacrificed by abdominal dis-

section and drawing of blood from the heart. After euthanasia, the liver from each hamster

was collected and divided into 3 pieces for proteomics, western blot analysis, and immuno-

histochemistry. The liver samples for proteomic and western blot analyses were stored at

-80˚C until use.

Protein isolation and purification from hamster livers

Protein was isolated from hamster livers and purified as described previously [15]. Briefly, 100

mg of liver tissue from each hamster in each group was suspended in 600 μl of lysis buffer (7

M urea, 2 M thiourea, 4% (w/v) 3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfo-

nate) and 40 mM Tris-base) and homogenized with a homogenizer at 4˚C for 5 min. The sam-

ples were sonicated, solubilized and centrifuged at 12,000×g for 20 min at 4˚C. Proteins were

acetone-precipitated and then centrifuged at 8,000×g at 4˚C for 10 min. The pellet was
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resuspended in 0.5 M triethylammonium bicarbonate (Sigma-Aldrich, Australia) and 0.1%

sodium dodecyl sulfate (SDS). Protein concentration was measured by Bradford protein assay

(Bio-Rad, Gladesville, Australia) according to the manufacturer’s instruction. Liver proteins

from 3 hamsters of each group were used and considered as biological replicates for liquid

chromatography-tandem mass spectrometry (LC-MS/MS) analysis.

Fig 1. Experimental design. A hamster model was used to study the effect of curcumin treatment on liver protein expression. Five experimental groups of

hamsters were used as shown in the diagram: 1) normal controls, 2) Opisthorchis viverrini (Ov)-induced CCA, 3) Ov-induced CCA with curcumin treatment, 4) Ov-

infected and 5) Ov-infected with curcumin treatment. Administration of NDMA in combination with O. viverrini infection was used to induce CCA in hamsters. A

diet containing 1% curcumin was given to hamsters in the “Ov-induced CCA with Cur” and “Ov-infected with Cur” groups for 6 months whereas the remaining

groups were fed with a standard diet. After six months, hamsters were sacrificed, and the livers were subjected to iTRAQ and tandem mass spectrometry analyses.

https://doi.org/10.1371/journal.pone.0207405.g001
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Protein reduction, alkylation and iTRAQ labelling

A total of 100 μg of liver protein from three hamsters in each group was reduced, alkylated and

labelled using the iTRAQ Reagent-8PLEX Multiplex Kit (AB SCIEX, Mt Waverley, Australia)

as described previously [15]. In brief, protein samples were reduced with 10 mM dithiothreitol

at 60˚C for 1 h and alkylated in 50 mM iodoacetamide at 37˚C for 30 min in the dark. After

digestion by trypsin with overnight incubation at 37˚C, samples were labelled with iTRAQ

reagents for 2 h at room temperature. Labeled peptides from all groups (the “CCA”, “CCA

+Cur”, “Ov-infected”, “Ov-infected + Cur” and two control groups) were combined together,

resulting in 3 biological replicates and each containing 6 peptide samples. Finally, the mixtures

were sequentially passed through HiTrap ion exchange columns (GE Healthcare, Little Chal-

font, UK), and SepPak C18 cartridge (Waters, Milford, MA, USA) to remove unbound iTRAQ

reagent and to desalt. The purified peptides were then lyophilized and stored at -80˚C prior to

further analysis.

Peptide OFFGEL fractionation

Purified peptides were fractionated using a 3100 OFFGEL Fractionator (Agilent Technologies,

Santa Clara, CA, USA) with a 24-well immobilized pH gradient (IPG) strip (24 cm long, 3–10

linear pH range; GE Healthcare). Lyophilized peptide samples were reconstituted to a total vol-

ume of 3.6 ml using OFFGEL peptide sample solution, and 150 μl of mixture was loaded into

each well. Isoelectric focusing was run with a maximum current of 50 μA until reaching 50

kVh. Twenty-four fractions were recovered, lyophilized and stored at -80˚C prior to LC-MS/

MS analysis.

Tandem mass spectrometry

Lyophilized OFFGEL fractions were resuspended in 15 μl of 5% (v/v) formic acid in H2O and

analyzed by LC-MS/MS using a Shimadzu Prominence Nano HPLC (Shimadzu, Brisbane,

Australia) coupled to a Triple TOF 5600 mass spectrometer (AB SCIEX) equipped with a

nano-electrospray ion source. In brief, 2 μl of each fraction were injected into a 50

mm × 300 μm C18 trap column (Agilent Technologies) at 20 μl/min and then de-salted on a

trap column using 0.1% formic acid at a flow rate of 20 μl/min for 5 min. The column was

placed in-line with the analytical nano-HPLC column (5 μm C18; 150 mm x 75 μm; Vydac,

Theale, UK) for LC-MS/MS analysis. Peptide elution and ion-spraying were performed as

described elsewhere [15]. Full scan TOF-MS data were acquired in an Information-Dependent

Acquisition (IDA) mode over the mass range 350–1800 m/z and product ions 100–1800 m/z

and then processed using Analyst TF 1.5.1 software (AB SCIEX).

Protein identification and database searching

Spectral searching was performed using ProteinPilot v4 (AB SCIEX) with the Paragon algo-

rithm [16] against the UniProt golden hamster (Cricetulus griseus) proteome database

(UP000001075) and finally grouped using ProteinPilot’s ProGroup algorithm. The Trans

Proteomic Pipeline (TPP) [17] with PeptideProphet and ProteinProphet was used to validate

the peptides and identify the proteins. The Mayu algorithm [18] was used to calculate false dis-

covery rate (FDR). The iTRAQ reporter ion intensities identified by ProteinPilot and which

possessed a probability greater than 0.95 (S1 Table) were used in the R package iQuantitator

[19] to estimate the credible intervals for protein expression across multiple iTRAQ experi-

ments. The proteins were considered as up- or down-regulated if the start and end of
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computed 95% credible intervals were>1 or <1, respectively. Only proteins quantified on the

basis of two significant peptides were considered.

Soft clustering analysis

Soft clustering analysis was performed using R package “MFuzz” version 2.40 [20]. A set of

311 proteins having substantial changes in their expression either in one or more experimental

groups were chosen for soft clustering analysis using the fuzzy c-means algorithm with default

parameters.

Western blotting

Proteins were extracted from hamster liver tissues (120 mg) using RIPA buffer (50 mM Tris/

HCl, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate and 0.1% SDS) and protein

concentration was determined using the Bradford assay. Ten micrograms of liver protein were

separated by SDS-PAGE and transferred to a polyvinylidene difluoride membrane (PVDF,

Amersham, Piscataway, NJ, USA) for 2 h at 60 V. After blocking with 5% skim milk in phos-

phate-buffered saline containing 0.05% Tween-20 (PBST), membranes were incubated with

appropriate primary antibodies overnight at 4˚C and then incubated with the HRP-conjugated

secondary antibody for 1 h at room temperature. Chemiluminescent reaction was developed

using ECL western blotting detection reagent (GE Healthcare) and then captured using the

ImageQuant LAS4000 mini imager (GE Healthcare). The ImageQuant TL software v2005

(1.1.0.1) (Non-linear Dynamics, Durham, NC, USA) was used for densitometry of each band.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a loading control.

Immunohistochemistry (IHC) and grading

An immunohistochemical study was performed using the immunoperoxidase method as

described previously [15]. In brief, the hamster liver tissue sections were deparaffinized and

rehydrated and antigens were unmasked by autoclaving for 10 min at 110˚C with sodium cit-

rate buffer (10 mM sodium citrate, 0.05% Tween-20, pH 6.0). After endogenous peroxidase

quenching and blocking of non-specific binding, tissue slides were incubated at 4˚C overnight

with primary antibodies. After washing with PBS, tissue slides were incubated with the appro-

priate secondary antibody and the immunoperoxidase reaction was then developed with 3,3’-

diaminobenzidine (DAB; Sigma-Aldrich). Staining density and intensity were placed in 4x4

grades, as described previously [15].

Prediction and analysis of curcumin-protein interaction

STITCH software (http://stitch.embl.de), based on the following criteria: species (Homo sapi-
ens), confidence score (0.40), and active prediction methods (all and no more than 10), was

used to elucidate the potential interactions between each candidate protein (S100A6, lumican,

plastin-2, 14-3-3 zeta/delta and vimentin) and curcumin as described previously [21].

Statistical analyses

Relative protein expression levels are presented as mean±S.D. The differences of protein

expression levels of each group were determined using the ANOVA. The differences of IHC

grading scores among experimental groups were assessed by Kruskal-Wallis test. Statistical

analyses were performed using SPSS version 15 (SPSS, Inc, Chicago, IL, USA). A p-value less

than 0.05 was considered as statistically significant.
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Results

Protein dysregulation in the liver of CCA hamsters and its possible

prevention by curcumin

Firstly, we sought to explore the overall expression of protein in the livers derived from ham-

sters of each experimental group. More than 500 proteins were identified in the livers of CCA

hamsters. Two-hundred and forty-six proteins from hamsters in the CCA group and 262 pro-

teins from hamsters in the CCA+Cur group significantly differed from those in the normal

hamsters (S2 and S3A Tables). As shown in Fig 2A, 29 proteins in the CCA group (S3B Table)

were expressed at significantly different levels than in normal and CCA+Cur livers and 25 pro-

teins in the CCA+Cur group (S3C Table) significantly differed in expression levels from those

in livers of normal and CCA groups. Although a further 122 proteins shared by the CCA and

CCA+Cur groups differed significantly from the normal group in expression levels, their

expression did not differ between the CCA and the CCA+Cur groups (S3D Table).

Interestingly, the expression levels of 99 proteins in the CCA group, which significantly

deviated in expression levels from those in the normal controls, were also significantly modu-

lated by curcumin treatment (S3E Table). Among them, 40 proteins, including 5 proteins pre-

viously identified in CCA hamsters [15] (S100A6, lumican, plastin-2, 14-3-3 zeta/delta and

vimentin), were significantly upregulated in the CCA group, but significantly suppressed in

the CCA+Cur group (Table 1). Some proteins, such as histone H3.1t, albumin, creatine kinase

B-type, glutathione s-transferase theta-1, apolipoprotein A-I and peptidyl-prolyl cis-trans

isomerase were upregulated in CCA hamsters, but their levels in the CCA+Cur group were

comparable with those in normal hamsters (Table 1 and yellow labels in S3E Table). Con-

versely, 45 proteins were significantly downregulated in the CCA group, but were significantly

upregulated in the CCA+Cur group (S3E Table). Four proteins were significantly upregulated

in the CCA group and further upregulated in the CCA+Cur group (green labels in S3E Table)

and another 10 proteins were under-expressed in the CCA group and even more decreased in

the CCA+Cur group (orange labels in S3E Table).

Effect of curcumin treatment on proteome changes in liver fluke-infected

hamsters

Opisthorchis viverrini-associated CCA genesis is multistep and takes several years. Therefore,

identification of proteomic changes during exposure to predisposing factors such as O. viver-
rini infection may improve knowledge of the mechanisms of tumorigenesis as well as identify

possible chemopreventive targets for CCA. We therefore examined protein expression during

infection with O. viverrini (OV group) compared with expression in the group infected with

O, viverrini and given curcumin treatment (OV+Cur group) and in normal hamsters. Several

proteins identified in both experimental groups were dysregulated relative to normal hamsters

(S3F Table). As shown in Fig 2B, in comparison with normal hamsters, 47 proteins were dysre-

gulated only in the OV group (S3G Table) and 50 proteins in the OV+Cur group (S3H Table).

Thirteen proteins did not differ significantly in expression levels between the OV and OV

+Cur groups, but did differ significantly between normal controls and these two treatment

groups (S3I Table). Interestingly, the expression of 29 proteins, including lumican, vimentin

and S100A6, were significantly upregulated in the OV group compared to normal controls,

but upregulation was significantly suppressed by curcumin treatment (S3J Table). In contrast,

47 proteins were significantly downregulated in the OV group, but their expression was

induced in the OV+Cur group (S3J Table). The expression of epoxide hydrolase 1 was signifi-

cantly upregulated in the OV group compared to normal controls, and even more significantly
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in the curcumin treatment group, whereas the expression of Hsc70-interacting protein was sig-

nificantly downregulated in the OV group compared to normal controls, and further reduced

by curcumin treatment (S3J Table).

Soft clustering of protein expression patterns across the experimental

groups

Soft clustering analysis comparing the expression rations of 311 proteins derived from all

experimental groups was performed. The proteins fell into 9 different clusters, according to

differing expression profiles among the experimental groups (Fig 3). In total, 60 proteins fell

into clusters 6 and 9 (Fig 3 and S4 Table). These clusters included proteins with significantly

increased expression in the OV (experimental group 1 in S4 Table) and CCA groups (experi-

mental group 3 in S4 Table) compared to the normal group, and which experienced suppres-

sion in the curcumin treatment groups (OV+Cur; experimental group 2, CCA+Cur;

experimental group 4). Interestingly, some proteins in clusters 6 and 9, such as vimentin, lumi-

can, S100A6, plastin-2, 14-3-3 zeta/delta, were previously identified as dysregulated proteins in

the experimental CCA hamster model [15]. Apart from clusters 6 and 9, the expression of

most proteins in clusters 1 and 7 (53 proteins; Fig 3 and S4 Table) was downregulated in the

CCA group (group 3) compared to those in the OV (group 1) and OV+Cur (group 2) groups,

but their expression was restored by curcumin treatment (CCA+Cur; group 4). Furthermore,

the expression of proteins in cluster 2 (25 proteins; Fig 3 and S4 Table) also reflected the possi-

ble anticancer activity of curcumin as their expression was increased in the CCA+Cur group

(group 4), compared to the OV (group 1), OV+Cur (group 2) and CCA (group 3) groups.

Therefore, we suggest that the proteins in clusters 1, 2, 6, 7 and 9 might be good candidates for

prevention as well as treatment of CCA.

Curcumin treatment suppresses the dysregulated expression of proteins in

liver of CCA hamsters

Immunoblotting and immunohistochemistry (IHC) analyses were used to verify protein

expression identified in the iTRAQ analysis. We previously established that the proteins

S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin were significantly upregulated in

CCA tissues derived from CCA hamsters and we hypothesized that all those proteins were

involved in CCA genesis [15]. Furthermore, soft clustering analysis placed these proteins into

clusters 6 and 9 because their levels were obviously increased in the CCA group compared to

the normal and OV groups, but this overexpression was subsequently repressed by curcumin

treatment (CCA+Cur group). We therefore verified the effects of curcumin treatment on the

expression of those proteins in hamster CCA tissues. Consistent with the iTRAQ data, immu-

noblot analysis of hamster liver proteins confirmed a significant increase in the expression of

all 5 proteins in the CCA group when compared to normal controls and 4 of the proteins

(S100A6, lumican, 14-3-3 zeta/delta and vimentin) were significantly downregulated in the

CCA+Cur group (Fig 4).

Accordingly, IHC analysis revealed that S100A6, lumican, plastin-2 and 14-3-3 zeta/delta

were expressed in the cytoplasm of tumor cells while vimentin was found mainly in the

Fig 2. Differential protein expression in livers of hamsters in CCA vs. CCA+Cur groups and OV vs. OV+Cur groups

relative to normal control livers. The expression of liver proteins in these hamsters was investigated by iTRAQ-mass

spectrometry. The Venn diagram shows numbers of proteins dysregulated uniquely in (A) CCA vs. CCA+Cur groups and (B)

OV vs. OV+Cur groups (relative to controls) and also those shared between the groups. The full list of proteins is shown in S3

Table.

https://doi.org/10.1371/journal.pone.0207405.g002
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cytoplasm of fibroblasts in periductal fibrotic tissue and tumor stroma (Fig 5). Expression lev-

els of these proteins were significantly higher in the CCA group compared to the normal

group. Notably, although the levels of these proteins in the CCA+Cur group were significantly

Table 1. List of 40 upregulated proteins in CCA which were significantly suppressed by curcumin treatment.

No. Accession Description Protein fold-change

(Compared to normal)

CCA:CCA+Cur

CCA CCA+Cur

1 G3IKI9 Serum amyloid A protein 7.00 3.03 0.47

2 G3HNJ3 Clusterin 6.16 2.80 0.48

3 G3I5L3 Annexin 4.88 2.77 0.62

4 G3HC31 Protein S100-A6 4.52 2.14 0.53

5 G3GTP7 Vitronectin 4.26 2.10 0.49

6 G3HJG6 Decorin 4.00 2.20 0.61

7 G3HSX8 Biglycan 3.75 1.64 0.48

8 G3I8F7 Keratin, type I cytoskeletal 19 3.73 1.67 0.49

9 G3HHR3 Vimentin 3.38 2.30 0.68

10 G3IG05 Annexin A2 3.32 2.26 0.71

11 G3I4Z7 Galectin-1 3.11 1.65 0.57

12 G3GVD0 Actin, cytoplasmic 1 2.89 1.50 0.53

13 G3HJG5 Lumican 2.89 1.59 0.58

14 G3I3Y6 Glutathione S-transferase P 2.85 1.81 0.67

15 G3HUU7 Protein S100-A10 2.73 1.51 0.62

16 G3II08 Keratin, type II cytoskeletal 7 2.70 1.66 0.64

17 G3H8N1 Plastin-2 2.62 1.93 0.78

18 G3HQC5 Prolargin 2.62 1.44 0.58

19 G3IDD4 Serpin H1 2.50 2.00 0.81

20 G3GZG6 Serotransferrin 2.45 1.62 0.67

21 G3HIX6 Tryptophanyl-tRNA synthetase, cytoplasmic 2.38 1.71 0.77

22 G3HPC9 Apolipoprotein E 2.38 1.14 0.49

23 G3H8Y5 Collagen alpha-1(VI) chain 2.38 1.92 0.83

24 G3HRQ4 Myosin light polypeptide 6 2.27 1.58 0.71

25 G3I1V3 Fibronectin 2.08 1.58 0.75

26 G3HKZ1 14-3-3 protein zeta/delta 1.98 1.44 0.77

27 G3I6I6 Tubulin alpha-1A chain 1.78 1.29 0.73

28 G3HG95 Lamin-A/C 1.74 1.39 0.80

29 G3HHM2 Histone H3.1t 1.72 1.18 0.74

30 G3I4H6 Fructose-bisphosphate aldolase 1.70 1.33 0.80

31 G3IDM2 Cofilin-1 1.70 1.26 0.75

32 G3HPV7 Histone H4 1.67 1.26 0.76

33 G3IAL6 Serum albumin 1.65 1.06 0.64

34 G3H377 Creatine kinase B-type 1.62 1.05 0.68

35 G3IMS5 Serum albumin 1.58 0.95 0.62

36 G3H576 Annexin A6 1.51 1.30 0.87

37 G3HY04 Glutathione S-transferase theta-1 1.40 1.02 0.75

38 G3IKC3 Glutathione S-transferase Mu 6 1.36 0.83 0.61

39 G3I7Q1 Apolipoprotein A-I 1.34 0.96 0.72

40 G3HIQ1 Peptidyl-prolyl cis-trans isomerase 1.19 1.05 0.89

https://doi.org/10.1371/journal.pone.0207405.t001
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higher when compared to those in the control group, their expression levels were significantly

lower when compared to the CCA group.

Fig 3. Cluster analysis of protein expression in all experimental groups. A significant dysregulation of proteins in at least one condition across all experimental

groups was clustered by the R package Mfuzz into 9 different clusters. Clusters 6 and 9 represent the proteins that were upregulated in OV and CCA groups but were

downregulated in the OV+Cur and in CCA+Cur groups, respectively. Clusters 1 and 7 indicate the proteins that were downregulated in the OV and CCA groups,

but were induced in the OV+Cur and CCA+Cur groups. The experimental groups are numbered as follows; 1 = OV group, 2 = OV+Cur group, 3 = CCA group, and

4 = CCA+Cur group. The names of proteins in each cluster are shown in S4 Table.

https://doi.org/10.1371/journal.pone.0207405.g003
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Potential interaction of dysregulated proteins and interaction of curcumin

with candidate proteins

The STITCH diagram (Fig 6) shows potential interactions between dysregulated proteins and

curcumin for prevention and treatment of CCA. The dysregulated proteins likely had direct

and/or indirect interactions with curcumin. For instance, curcumin showed a direct relation-

ship with epidermal growth factor receptor (EGFR). EGFR is a protein in the HER/ErbB family

and is involved in CCA progression mainly through induction of an epithelial to mesenchymal

transition (EMT) and eventually invasion and metastasis [22]. In addition, curcumin indirectly

interacted with S100A6, lumican, plastin-2, and vimentin through various pathways.

Discussion

Although anti-inflammatory and anticancer properties of curcumin have been well studied in

several chronic diseases [23, 24] and cancer models [25, 26], including in O. viverrini infection

and CCA [12, 13, 27], the molecular mechanisms by which curcumin modulates protein

expression and exerts its effects in CCA remain to be demonstrated. In this work, we used iso-

baric labelling to quantify protein expression in a hamster model of O. viverrini-associated

CCA, with and without curcumin treatment. We primarily aimed at determining the mecha-

nisms by which curcumin can interrupt the development of CCA and identifying potential

therapeutic targets for treatment of CCA. O. viverrini-induced CCA arises after decades of

chronic inflammation, which makes it similar to other inflammation-based cancers such as

hepatocellular carcinoma (HCC), colon cancer and esophageal adenocarcinoma [28]. Accord-

ingly, it is hoped that this work will also inform drug development efforts for other cancers

induced by inflammation.

Several dysregulated proteins have been identified in livers of hamsters with O. viverrini
infection and CCA. Among them, 5 proteins (S100A6, vimentin, lumican, 14-3-3 zeta/delta

and plastin-2) were upregulated compared to normal hamsters, agreeing with a previous

report using the same model [15]. Moreover, upregulation of these proteins was found in the

OV group and their levels were persistently high until development of CCA, indicating the

Fig 4. Western blotting validation of five candidate proteins (S100A6, lumican, plastin-2, 14-3-3 zeta/delta and vimentin) from iTRAQ protein expression data

in hamster livers. (A) Western blot analysis detecting expression of candidate proteins in normal controls (lanes 1–4); the Ov-induced CCA group (lanes 5–8) and the

Ov-induced CCA with curcumin treatment group (lanes 9–12). (B) The relative band intensities of the western blot analysis in the Ov-induced CCA group and the Ov-

induced CCA with curcumin group were normalized by GAPDH and the results are shown as a bar graph. An asterisk (�) denotes a significant difference (p< 0.05)

versus the normal group and a hash (#) denotes a significant difference versus the Ov-induced CCA group (p< 0.05).

https://doi.org/10.1371/journal.pone.0207405.g004
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importance of these proteins in CCA genesis. The proteins S100A6 and 14-3-3 zeta/delta were

also recently identified as abundant proteins in tumor interstitial fluid and cancerous tissue of

CCA patients [29]. Interestingly, the expression of those 5 proteins was distinctly suppressed

Fig 5. Immunohistochemical analysis of dysregulated proteins in hamster liver tissues. (A) The staining patterns of five proteins (S100A6, lumican, plastin-2, 14-

3-3 zeta/delta and vimentin) derived from iTRAQ protein expression data in hamster livers. A representative section from each group is shown (4 cases/group;

original magnification, ×200). (B) Overall expression scores were calculated from the intensity score multiplied by the density score. The overall grading scores are

shown as a bar graph. An asterisk (�) denotes a significant difference (p< 0.05) versus normal controls whereas a hash (#) denotes a significant difference versus the

Ov-induced CCA group.

https://doi.org/10.1371/journal.pone.0207405.g005

Proteome changes by curcumin treatment in opisthorchiasis-associated CCA

PLOS ONE | https://doi.org/10.1371/journal.pone.0207405 November 15, 2018 13 / 22

https://doi.org/10.1371/journal.pone.0207405.g005
https://doi.org/10.1371/journal.pone.0207405


by curcumin treatment, especially in hamsters with CCA. S100A6, also called calcyclin, is

reportedly involved in many aspects of cancers [30]. Overexpression of S100A6 is associated

with poor prognosis of patients in many cancer types [31–33]. A recent study has shown that

S100A6 activates the p38/MAPK pathway, leading to an increase of CCA cell proliferation,

while silencing of S100A6 produces an opposite effect [34]. Vimentin [35] and lumican [36]

Fig 6. STITCH diagram of the protein interaction network between dysregulated proteins and curcumin. The network shows predicted interactions of

candidate proteins (S100A6, lumican, plastin-2, and vimentin) and other dysregulated proteins with curcumin using STITCH analysis. Action types and action

effects among dysregulated proteins and curcumin are illustrated. EGFR = epidermal growth factor receptor, UBC = ubiquitin C, LCP-1 (Plastin-2) = lymphocyte

cytosolic protein 1, CACYBP = calcyclin binding protein, MAGOH = mago-nashi homolog, proliferation-associated protein, VIM = vimentin, COL1A2 = collagen,

type I, alpha 2, LUM = lumican, ACAN = aggrecan, CHST6 = carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6, CHST5 = carbohydrate (N-

acetylglucosamine 6-O) sulfotransferase 5, CHST1 = carbohydrate (keratan sulfate Gal-6) sulfotransferase 1.

https://doi.org/10.1371/journal.pone.0207405.g006
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have long been known as cancer-associated proteins and are involved in tumor growth and

metastasis. Previous studies also showed that inhibition of vimentin’s activity or suppression

of its expression induce cancer-cell apoptosis and inhibit the invasion, motility and migration

of cancer cells [37–39]. Suppression of lumican also reduces tumor growth and metastasis in

experimental animals [36]. The protein 14-3-3 zeta/delta is encoded by the YWHAZ gene [40]

and has oncogenic potential in a number of cancers including CCA [41, 42]. Importantly, a

high level of 14-3-3 zeta/delta expression is also associated with poor clinical outcomes of CCA

patients [41, 42]. Plastin-2 belongs to the plastin protein family, which consists of 3 plastin iso-

forms. Of these, only plastin-2 or L-plastin is found in cancers [43]. Expression of plastin-2

induces proliferation, invasion and loss of E-cadherin expression [44], whereas suppression of

plastin-2 diminishes progression and metastasis of cancer cells both in vitro and in vivo [45].

All this evidence is consistent with the hypothesis that curcumin suppresses CCA genesis, in

part, by reducing expression of S100A6, vimentin, lumican, 14-3-3 zeta/delta and plastin-2.

The administration of curcumin during O. viverrini infection significantly affected the

expression of other proteins involved in adhesion, fibrolysis and extracellular matrix degrada-

tion. All of these processes are well-known players during carcinogenesis. Many of the identi-

fied proteins are involved in wound healing and inflammatory process; vitronectin [46],

myosin X [47], fibrinogen [48], delta-catenin [49], transgelin-2 [50], decorin [51] and clusterin

[52]. These proteins were categorized in clusters 6 and 9 as they were overexpressed in both

the Ov-infected and CCA groups and significantly repressed in the respective curcumin-

treated groups. It has been proposed that cancer is able to ‘hijack’ the wound healing response

to provide the stroma that is needed for their growth [53]. This is especially pertinent to pro-

teins such as vitronectin, decorin and fibrinogen and suggests a potential anti-cancer ability of

curcumin through suppression of key processes during CCA development. Clusterin is protein

closely associated with activation of oncogenic transcription factor NF-κB [54]. NF-κB is

believed to be an important key player in O. viverrini-induced CCA genesis [8, 55]. Constitu-

tive activation of NF-κB is a feature this type of cancer and is found both in human CCA tis-

sues [56] and human-derived CCA cell lines [13]. Suppression of NF-κB activation by

curcumin treatment was previously demonstrated using both in vitro [13] and in vivo [12]

models of Ov-induced CCA. Besides, the expression of other NF-κB activators, such as

S100A10 protein [57], also increased in livers from hamsters of the OV and CCA groups and

its expression was suppressed by curcumin treatment. Thus, suppression of clusterin as well as

S100A10 might be among the mechanisms of CCA suppression by curcumin treatment. Other

proteins in clusters 6 and 9, including annexin isoforms, cofilin-1, galectin-1 and coactosin-

like protein, are also known to play different roles in cancers [58–61]. Therefore, they could

also be the potential targets for prevention and treatment of CCA.

A number of proteins appeared to be over-expressed only in the CCA+Cur group. Proteins

included in cluster 2 were over-expressed in the CCA+Cur group but were either under-

expressed or not affected at all in the other experimental groups, suggesting a specific effect of

curcumin on tumor cells. Some of these proteins have been identified as tumor inhibitors in

some contexts, including calumenin [62], alpha2-macroglobulin [63], myosin II [64], hetero-

geneous nuclear ribonucleoprotein G [65] and nucleophosmin [66]. Conversely, a number of

proteins traditionally regarded as oncogene or tumor markers, were also over-expressed in the

CCA+Cur group, including the LIM and SH3 domain 1 protein, 78 kDa glucose-regulated

protein and ribosome-binding protein 1. The 78 kDa glucose-regulated protein is redox-sensi-

tive [67] and its upregulation in the CCA+Cur group suggests that curcumin is influencing the

response of tumor cells to the local redox environment. Cells, including tumor cells, require a

delicate balance of intracellular ROS since excess or insufficient of ROS is detrimental to cell

functions and signaling pathways [68]. One of the main regulators of ROS is superoxide
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dismutase (SOD), an enzyme that undergoes dysregulation and functional abnormality in sev-

eral cancer types [69]. SOD was originally considered a tumor suppressor as many tumors

exhibited under-expression of MnSOD. Increased SOD expression interrupts superoxide

anion/hydrogen peroxide balance, changes of cellular redox state and eventually suppresses

cell proliferation [70, 71]. In this work, SOD was overexpressed in the CCA+Cur group. There-

fore, upregulation of SOD in CCA+Cur hamsters might be responsible for the anti-CCA activ-

ity of curcumin, agreeing with previous studies in breast cancer [71] and prostate cancer [72].

Apart from SOD, upregulation of other antioxidant enzymes such as glutathione s-transferases

and peroxiredoxin-1 (S3A Table), was also observed in livers of the curcumin-treated CCA

hamsters compared to untreated-CCA hamsters. Thus, induction of these antioxidants may

also be involved in preventive effects of curcumin against Ov-induced CCA in hamsters.

Administration of sub-carcinogenic dose of NDMA along with O. viverrini infection is a

well-known procedure to induce CCA development in hamster [73]. Nitric oxide production

during chronic opisthorchiasis not only contribute to chronic inflammation but also endoge-

nous generation of NDMA [74, 75]. Hepatic cytochrome P450 enzyme family (CYP450) is a

well-known enzyme which play a role in detoxification of NDMA [76]. Previous studies

reported that the CYP2A6, an isoform of CYP450, was upregulated in opisthorchiasis [77] and

opisthorchiasis-associated CCA patients [78]. In this study, our proteomic data found that the

expression of CYP2A6 in CCA and CCA+Cur groups was not significantly deviated from that

in control group. However, the expression of other CYP450 isoforms, the CYP4A14 was signif-

icantly downregulated in CCA hamsters but restored to normal in CCA+Cur hamsters, sug-

gesting a role for CYP4A14 in NDMA detoxification and anti-CCA mediated by curcumin

treatment.

Although curcumin has shown diverse pharmacologic effects and is promising for cancer

treatment, this compound has some important drawbacks, particularly its bioavailability [79,

80]. Approaches taken to solve this problem have been reported, such as incorporation of cur-

cumin in liposomes or other nanocarriers and use of curcumin analogues [3, 81]. However, in

this study, it is clear that curcumin had a satisfactory effect on prevention of CCA development

and that it affects expression of several proteins. As discussed above, many of these are key pro-

teins involved in both inflammation and cancer. Our data provide a basis for identification of

candidate proteins for clinical chemoprevention and therapy of CCA. This supposition is sup-

ported by the evidence for various direct and indirect interactions of curcumin with the dysre-

gulated proteins (Fig 6). Additionally, further study on the function and the involvement of

the candidate proteins in Ov-associated CCA may support the potential use of these proteins

as therapeutic targets for treatment of CCA.
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