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Abstract

Background: Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogene, which promotes cell survival,
proliferation, motility and progression in cancer cells. Targeting STAT3 signaling may lead to the development of novel
therapeutic approaches for human cancers. Here, we examined the effects of epigallocathechin gallate (EGCG) on STAT3
signaling in pancreatic cancer cells, and assessed the therapeutic potential of EGCG with gemcitabine or JAK3 inhibitor
CP690550 (Tasocitinib) for the treatment and/or prevention of pancreatic cancer.

Methodology/Principal Findings: Cell viability and apoptosis were measured by XTT assay and TUNEL staining,
respectively. Gene and protein expressions were measured by qRT-PCR and Western blot analysis, respectively. The results
revealed that EGCG inhibited the expression of phospho and total JAK3 and STAT3, STAT3 transcription and activation, and
the expression of STAT3-regulated genes, resulting in the inhibition of cell motility, migration and invasion, and the
induction of caspase-3 and PARP cleavage. The inhibition of STAT3 enhanced the inhibitory effects of EGCG on cell motility
and viability. Additionally, gemcitabine and CP690550 alone inhibited STAT3 target genes and synergized with EGCG to
inhibit cell viability and induce apoptosis in pancreatic cancer cells.

Conclusions/Significance: Overall, these results suggest that EGCG suppresses the growth, invasion and migration of
pancreatic cancer cells, and induces apoptosis by interfering with the STAT3 signaling pathway. Moreover, EGCG further
enhanced the therapeutic potential of gemcitabine and CP690550 against pancreatic cancer.
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Introduction

Signal transduction and activators of transcription (STAT)

proteins is a family of cytoplasmic transcription factors which are

initially present in inactive forms [1,2]. They are stimulated by the

binding of signaling peptides, such as cytokine, growth factors, and

hormone, which results in dimerization of their cognate receptors

and activation of tyrosine kinases such as Janus kinase (JAK). The

activated tyrosine kinases could subsequently phosphorylate the

cytoplasmic domains of receptors to provide recognition sites for

non-phosphorylated STATs monomers. Once STATs are phos-

phorylated by activated tyrosine kinases after binding, they form

homo or hetero-dimers via their Src-homology 2 (SH2) domain

and rapidly migrate into the nucleus, where the dimers bind to

DNA sequences to active specific gene transcription [1,2].

Numerous experiments have demonstrated that normal physical

functions of STATs are critical in regulating many aspects of

cellular proliferation, differentiation, migration, and survival.

Among all the STAT family members, STAT3 is the most

intimately linked to cell survival and proliferation and tumorigen-

esis [3,4]. It is widely expressed in most tissues and is considered as

a potential oncogene. STAT3 is often constitutively active in many

human cancer cells, including multiple myeloma, glioblastoma,

leukemia, lymphoma, breast cancer, prostate cancer, lung cancer,

and neck cancer [5,6,7]. STAT3 can be activated by multiple

cytokines, including IL-6, IL-11, ciliary neurotrophic factor, and

leukemia inhibitory factor, which all use gp130-type receptors.

Interestingly, STAT3 can contribute to either apoptosis or survival

in different organs and cell types. It can promote the proliferation

in hepatocytes [8], neuron cells [9], and T cells [10], but is

indispensable for the apoptosis in mammary [11] and myeloid cells

[12].

STAT3 is a latent transcription factor that resides in the

cytoplasm. Upon activation by tyrosine phosphorylation, STAT3

dimerizes, translocates to the nucleus and binds to nuclear DNA to

modulate transcription of target genes. STAT3 phosphorylation is

principally mediated through the activation of non-receptor

protein tyrosine kinase family of JAKs, which include many
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members JAK1, JAK2, JAK3 and tyrosine kinase 2 [13,14].

Additionally, the STAT3 phosphorylation can also be mediated by

crosstalk with c-Src kinase [13,14,15]. The major phosphorylation

sites in STAT3 include tyrosine and serine residues at positions

Tyr705 and Ser727, respectively, located in the transactivation

domain. The activation of STAT3 results in expression of many

target genes required for tumor cell survival (e.g. Bcl-XL, Mcl-1

and survivin), proliferation (e.g. cyclin D1 and c-myc) and

angiogenesis [e.g. vascular endothelial growth factor (VEGF)] as

well as metastasis [16]. Thus, STAT3-signaling pathway has been

a favorite therapeutic target for drug development [17,18].

Gemcitabine (a nucleoside analog) showed more clinical benefit

on pancreatic cancer patients compared with the conventional

medications [19]. Some potent and selective JAK3 inhibitors, e.g.

CP690550, demonstrated significant clinical activity in cancer

[20,21]. CP690550 represents only a starting point in the search

for a safer small molecule immunosuppressant, and that an

isozyme-selective JAK3 inhibitor identified by rational drug design

might be substantially safer. In recent years, many new insights

have been gained into the investigation on a variety of purified

compounds from natural products. For instance, EGCG is the

major catechin from green tea and has been recognized as an

important chemopreventive agent and as modulators of tumor cell

response to chemotherapy [22,23,24]. It has been shown to inhibit

cell proliferation [25], induce apoptosis [26] in tumor cells,

prevent angiogenesis [27], modulate the invasion and migration of

cancers, and interfere with multiple signaling pathways, including

the nuclear factor-kB signaling pathway [28], epidermal growth

factor-mediated pathway [29], insulin-like growth factor-I signal-

ing pathway [30], mitogen-activated protein kinase-dependent

pathway [31], and proteasome degradation pathway [32].

In this paper, we examined the effects of EGCG on STAT3

signaling in human pancreatic cancer cells, and also assessed the

interactive effects of EGCG with gemcitabine or JAK3 inhibitor

CP690550 on their therapeutic potential. We found that EGCG

inhibited the expression of JAK3 and STAT3 (phospho and total),

STAT transcription and activation, and the expression of STAT3-

regulated genes, resulting in the inhibition of cell motility,

migration and invasion, and the induction of caspase-3 and PARP

cleavages. Inhibition of STAT3 by shRNA in pancreatic cancer

Figure 1. Effects of EGCG on pancreatic cancer cells. (A), Transwell migration assay. AsPC-1 and PANC-1 cells were plated in the top chamber of
the transwell and treated with EGCG (0–60 mM) for 24 h. Cells migrated to the lower chambered were fixed with methanol, stained with crystal violet
and counted. Data represent mean 6 SD. * or ** = significantly different from respective controls, P,0.05. (B) Matrigel invasion assay. AsPC-1 and
PANC-1 cells were plated onto the Matrigel-coated membrane in the top chamber of the transwell and treated with EGCG (0–60 mM) for 48 h. Cells
invaded to the lower chamber were fixed with methanol, stained with crystal violet and counted. Data represent mean 6 SD. * or ** = significantly
different from respective controls, P,0.05. (C), Caspase-3 activity. AsPC-1 and PANC-1 cells were treated with EGCG (0–40 mM) for 48 h, and the
caspase-3 activity was measured as per manufacturer’s instructions (Invitrogen). Data represent mean 6 SD. * = significantly different from respective
controls, P,0.05. (D), AsPC-1 and PANC-1 cells were treated with EGCG (0–60 mM) with or without gemcitabine (0.5 mM) for 48 h. Cells were
harvested and the Western blot analysis was performed to examine the expression of PARP and caspase-3. b-actin was used as a loading control.
PARP antibody recognizes cleaved PARP, and caspase-3 antibody recognizes cleaved/active caspase-3.
doi:10.1371/journal.pone.0031067.g001
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cells enhances the inhibitory effects of EGCG on cell migration

and motility. Our results demonstrate that activation of the

STAT3 signaling pathway is critical for the growth of pancreatic

cancer cells and suggest that EGCG targeting STAT3 signaling

may be a potential therapeutic intervention for pancreatic cancer.

Furthermore, the combination of EGCG with gemcitabine or

CP690550 had additive/synergistic effects on cell viability and

apoptosis.

Materials and Methods

Cell lines and culture conditions
Human pancreatic cancer cell lines AsPC-1 and PANC-1 were

purchased from the American Type Culture Collection (Manassas,

VA), and cultured in RPMI 1640 medium supplemented with

10% fetal bovine serum (Thermo Scientific) and 1% antibiotic-

antimycotic (Invitrogen) at 37uC in a humidified atmosphere of

95% air and 5% CO2.

Cell transfection
STAT3 shRNAs were designed using BLOCK-iTTM RNAi

Designer (Invitrogen).The accession number was obtained from

the Gene bank. The sequences of STAT3 shRNAs (accession

number: NM_139276) are corresponding to the coding regions

398–416 (59- CCA CTT TGG TGT TTC ATA A-39), 1070–1088

(59-CCCGTCAACAAATTAAGAA-39), 1448–1466 (59-GCC

TCT CTG CAG AAT TCA A-39) and 1935–1953 (59-GGA

CAA TAT CAT TGA CCT T-39) nucleotides. AsPC-1 and

PANC-1 cells were transfected with a mixture of shRNAs using

Lipofetamine 2000 (Invitrogen). After 24 h of transfection, cells

were treated with EGCG. Cells were used for cell viability

detection, scratch assay, qRT-PCR and western blotting.

XTT Assay
Cells (16104 in 200 ml culture medium per well) were seeded in

96-well plate (flat bottom), treated with or without drugs and

incubated for various time points at 37uC and 5% CO2. Before the

end of the experiment, 50 ml XTT labeling mixture (final

concentration, 125 mM XTT (sodium 2,3-Bis(2-methoxy-4-nitro-

5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt) and

25 mM PMS (phenazine methosulphate) per well was added and

plates were incubated for further 4 h at 37uC and 5% CO2. The

spectrophotometric absorbance of the sample was measured using

a microtitre plate (ELISA) reader. The wavelength to measure

absorbance of the formazon product was 450 nm, and the

reference wavelength was 650 nm.

Figure 2. EGCG inhibits JAK3/STAT3 pathway in pancreatic cancer. (A), AsPC-1 and PANC-1 cells were treated with EGCG (0–60 mM) for 48 h,
and the expression of STAT3 was measured by q-RT-PCR. Data represent mean 6 SD. * or ** = significantly different from respective controls, P,0.05.
(B), AsPC-1 and PANC-1 cells were treated with EGCG (0–60 mM) for 48 h. The expression of STAT3, p-STAT3, JAK3 and p-JAK3 was measured by
Western blot analysis. b-actin was used as a loading control. (C), Expression of STAT3 in AsPC-1 and PANC-1 cells. Cells were treated with EGCG (0–
60 mM) for 48 h. After incubation, the expression of STAT3 was measured by immunoflurescence. DAPI was used to stain nuclei. For better visuality,
the color of DAPI was changed from blue to red. The green color represents the expression of STAT3. Red color = nuclei.
doi:10.1371/journal.pone.0031067.g002
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Caspase-3/7 Assay
Cells (36104 per well) were seeded in a 96-well plate with 200 ml

culture medium. Approximately 16 h later, cells were treated with

various doses of EGCG. Casapse-3/7 activity was measured as per

manufacturer’s instructions (Invitrogen).

Scratch assay
AsPC-1 scrambled and STAT3 shRNA cells were seeded in 6

well dishes. When all the cultures were 50% confluent, a cross was

marked in the center of each dish using a 10 ml tip. The cells were

washed with PBS and cultured in fresh medium. The scratch

pictures were taken under a fluorescence microscope at 0, 24 and

48 h for the same positions after the cells were treated with EGCG.

Transwell migration assay
To determine the effect of EGCG on cell migration, AsPC-1 and

PANC-1 cells were plated in the top of chamber onto the noncoated

membrane (24-well insert; pore size, 8 mm; Corning Costar) at a

density of 16104 cells/well in RPMI medium containing 1% FBS,

and allowed to migrate toward RPMI medium containing 10% FBS

in the lower chamber. EGCG was added to the both chambers to

achieve the concentration of 0, 20, 40, 60 mM, respectively. After

24 h of incubation, cells were fixed with 4% paraformaldehyde and

stained with crystal violet. The migrated cells were counted under a

light microscope (four random fields per well).

Transwell invasion assay
To determine the effect of EGCG on cell invasion, AsPC-1 and

PANC-1 cells were plated in the top of chamber onto the Matrigel

coated membrane (24-well insert; pore size, 8 mm; Corning Costar)

at a density of 16104 cells/well in RPMI medium containing 1%

FBS, and allowed to invade toward RPMI medium containing 10%

FBS in the lower chamber. EGCG was added to the both chambers

to achieve the concentration of 0, 20, 40, 60 mM, respectively. After

48 h of incubation non-invaded cells were removed by cotton swab,

and invaded cells were fixed with 4% paraformaldehyde and stained

with crystal violet. The invaded cells were counted under a light

microscope (four random fields per well).

Transient transfection and STAT3 reporter
AsPC-1 and PANC-1 cells were cultured in 100 mm dishes and

transfected at 70% confluent with pGreenfire1-STAT3 reporter

plasmid using Lipofetamine 2000 (Invitrogen). After 24 h, cells were

treated with EGCG (0–80 mM). After incubation of 24 h, luciferase

activity was determined using the Dual-Luciferase Reporter Assay

System (Promega), according the manufacturer’s instructions on a

multilabel plate reader (Wallac Victor, Perkin-Elmer).

RNA isolation and real-time RT-PCR
Total RNA was isolated from AsPC-1 and PANC-1 cells using

TRIzol reagent (Invitrogen). RNA concentration was determined

using Nano Drop 2000 Spectrophotometer. cDNA was synthesized

and RT-PCR reactions were performed using SuperScript II

(Invitrogen) according to the manufacturer’s instructions. Real-time

PCR was performed on the Applied Biosystems 7300 Real-time PCR

System, using the following program: 50uC for 2 min, 95uC for

10 min, and then 40 cycles of 95uC for 15 s and 60uC for 1 min. PCR

Figure 3. EGCG inhibits the expression of STAT3-regulated genes. (A), STAT3 activity. AsPC-1 and PANC-1 cells were transfected with
pGreenfire1-STAT3 reporter plasmid. Cells were treated with EGCG (0–80 mM). After incubation of 24 hours, luciferase activity was determined using
the Dual-Luciferase Reporter Assay System, according the manufacturer’s instructions on a multilabel plate reader. Data represent mean 6 SD.
* = significantly different from respective controls, P,0.05. (B), VEGF, Bcl-XL, c-Myc, Survivin and Cyclin D1 were detected by qRT-PCR. Data represent
mean 6 SD. * = significantly different from respective controls, P,0.05.
doi:10.1371/journal.pone.0031067.g003
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primers were purchased from Realtimeprimers.com. All reactions

were performed in triplicate, and the relative expression of target

mRNA in each sample was normalized with that of mean GAPDH.

PCR primers sequences: GAPDH, forward primer 59- GAG

TCA ACG GAT TTG GTC GT -39; reverse primer 59- TTG ATT

TTG GAG GGA TCT CG -39; STAT3, forward primer 59- CCT

TTG ACA TGG AGT TGA CC -39; reverse primer 59- TAA AAG

TGC CCA GAT TGC TC -39; Cyclin D1, forward primer 59-

TTC AAA TGT GTG CAG AAG GA -39, reverse primer 59-

GGG ATG GTC TCC TTC ATC TT -39; c-Myc, forward primer

59- CGA CGA GAC CTT CAT CAA AA -39, reverse primer 59-

TGC TGT CGT TGA GAG GGT AG -39; Survivin, forward

primer 59- TCC CTG GCT CCT CTA CTG TT -39, reverse

primer 59- TGT CTC CTC ATC CAC CTG AA -39; VEGF,

forward primer 59- AGA CAC ACC CAC CCA CAT AC -39,

reverse primer 59- TGC CAG AGT CTC TCA TCT CC -39;

BclXL forward primer 59- GCT CTC ACT CCC AGT CCA AA -

39, reverse primer 59-GCT GAG GCC ATA AAC AGC TC -39.

Immunofluorescent staining
AsPC-1 and PANC-1 cells were cultured in RPMI medium

containing 10% FBS and treated with EGCG (0, 40, 60 mM) for

24 h. Cells were then fixed with 4% paraformaldehyde and

stained with antibodies against STAT3 (mouse monoclonal IgG1;

Cell Signaling) at 4uC overnight. Cells were washed and again

incubated with anti-mouse-FITC secondary antibody (Sigma)

along with DAPI (0.5 mg/ml). Stained slides were mounted with

mounting medium and visualized under a fluorescence micro-

scope. For better visuality, the color of DAPI was changed from

blue to red. The green color represents the expression of STAT3.

Western blotting analysis
To detect different proteins, AsPC-1 and PANC-1 cells treated

with EGCG (0–60 mM) were washed with PBS and lysed in RIPA

buffer containing 16protease inhibitor cocktail. The lysates were

centrifuged and the supernatant was collected. Protein concentra-

tions were determined using the Bio-Rad Protein Assay (Bio-Rad).

Protein extracts (40 mg) were separated on 12.5% SDS-PAGE.

Transferred membranes were blocked using 5% nonfat dry milk

and incubated overnight with primary antibodies at 1:1,000

dilutions in TBS, followed by secondary antibodies conjugated

with horseradish peroxidase at 1:5,000 dilutions in TBS-Tween 20

for 1 hour at room temperature. Membranes were developed

using ECL Substrate. Protein bands were visualized on X-ray film

using an enhanced chemiluminescence system.

Figure 4. Inhibition of STAT3 enhances the inhibitory effects of EGCG on motility and cell viability of pancreatic cancer cells. (A),
AsPC-1 and PANC-1 were transfected with STAT3 shRNA. The expression of STAT3 was performed by Western blotting. (B), AsPC-1 scratch assay.
AsPC-1 scrambled and STAT3 shRNA cells were cultured in 6 well dishes. The scratch was marked when the dishes were 50% confluent. Pictures were
taken after the cells were treated with EGCG and incubated for 0, 24 and 48 h. (C), Cell viability assay. AsPC-1 and PANC-1 (scrambled and STAT3
shRNA) cells were seeded and treated with EGCG (0, 20, 40, 60 mM). After 72 h of treatment, cell viability was performed by XTT assay. Data represent
mean 6 SD. * or ** = significantly different from respective controls, P,0.05.
doi:10.1371/journal.pone.0031067.g004
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Statistical analysis
The mean and SD were calculated for each experimental

group. Differences between groups were analyzed by one or two

way ANOVA using PRISM statistical analysis software (GrafPad

Software, Inc., San Diego, CA). Significant differences among

groups were calculated at P,0.05.

Results

EGCG inhibits migration and invasion of pancreatic
cancer cells, and induces caspase3 activity

It has been demonstrated that STAT3 plays an important role in

regulating cell movement by controlling cytoskeleton reorganization

and cell adhesion properties [33]. Due to the correlation between

STAT3 and cell movement, we examined the effects of EGCG on

the migration and invasion of AsPC-1 and PANC-1. Cells were

plated in the top of chamber onto the noncoated membrane and the

Matrigel coated membrane for migration and invasion detection,

respectively. After the treatments of EGCG, the migrated and

invaded cells were stained and counted. The results show that the

migrated and invaded pancreatic cells reduced in a dose-dependent

manner (Fig. 1A and B). These data suggested that EGCG can

inhibit the migration and invasion of pancreatic cancer cells.

Caspase-3 is a member of the cysteine-aspartic acid protease

(caspase) family and activated in the apoptotic cell both by

extrinsic (death ligand) and intrinsic (mitochondrial) pathways

[34]. EGCG induced caspase-3 activity in a dose dependent

manner in both AsPC-1 and PANC-1 cells, as measured by

fluorometric assay (Fig. 1C). These data suggest that EGCG can

induce apoptosis by activating caspase-3.

EGCG enhances gemcitabine-induced cleavage of
caspase3 and PARP in pancreatic cancer cells

PARP is normally involved in DNA repair, DNA stability, and

other cellular events, and cleaved by members of the caspase

family during early apoptosis; therefore, it is a substrate for caspase

activity and a reliable marker of apoptosis [35]. We next examined

whether EGCG and gemcitabine interact together to cleave

caspase-3 and PARP in AsPC-1 and PANC-1 cells. EGCG and

gemcitabine alone induced cleavage of caspase-3 in both the cell

Figure 5. Effects of STAT3 shRNA on the regulation of cyclin D1, Bcl-XL and c-Myc by EGCG. (A), AsPC-1/scrambled and AsPC-1/STAT3
shRNA cells were treated with or without EGCG (60 mM) for 48 h. The expression of cyclin D1 was measured by q-RT-PCR. Data represent mean 6 SD.
* = significantly different from respective controls, P,0.05. (B), PANC-1/scrambled and PANC-1/STAT3 shRNA cells were treated with or without EGCG
(60 mM) for 48 h. The expression of cyclin D1 was measured by q-RT-PCR. Data represent mean 6 SD. * = significantly different from respective
controls, P,0.05. (C), PANC-1/scrambled and PANC 1/STAT3 shRNA cells were treated with or without EGCG (60 mM) for 48 h. The expression of Bcl-XL

was measured by qRT-PCR. Data represent mean 6 SD. * = significantly different from respective controls, P,0.05. (D), PANC-1/scrambled and PANC-
1/STAT3 shRNA cells were treated with or without EGCG (60 mM) for 48 h. The expression of c-Myc was measured by q-RT-PCR. Data represent mean
6 SD. * = significantly different from respective controls, P,0.05.
doi:10.1371/journal.pone.0031067.g005
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lines. Furthermore, the combination of EGCG with gemcitabine

induced significantly more caspase-3 cleavage than single agent

alone (Fig. 1D). EGCG and gemcitabine alone showed PARP

cleavage in AsPC-1 and PANC-1 cells. By comparison, the

combination of EGCG with gemcitabine resulted in an enhanced

PARP cleavage. These data suggest that EGCG can induce

apoptosis by caspase-3 activation and PARP cleavage.

EGCG inhibits JAK3/STAT3 pathway in pancreatic cancer
We next examined the effects of EGCG on expression of

STAT3, phosphorylation of STAT3 and JAK3, and nuclear

expression of phospho-STAT3 in AsPC-1 and PANC-1 cells. To

examine the effects of EGCG on STAT3 expression, we

performed qRT-PCR analysis (Fig. 2A).

EGCG inhibited the expression of STAT3 mRNA in both

AsPC-1 and PANC-1 cells. We next measured the expression of

total and phosphorylated JAK3 and STAT3 by the Western blot

analysis (Fig. 2B). EGCG inhibited the phosphorylation of both

JAK3 and STAT3 in a dose-dependent manner in AsPC-1 and

PANC-1 cells. Surprisingly, the expression of both JAK3 and

STAT3 was also inhibited by EGCG. These data suggest that

EGCG can inhibit the expression of JAK3 and STAT3, as well as

their post-translation modification.

Since STAT3 is constitutively active in pancreatic cancer cells,

we next examined the effects EGCG on STAT3 expression by

immunofluorescence. As shown in Fig. 2C, EGCG inhibited the

expression of STAT3 (presence of the green color) in a dose-

dependent manner in both the cell lines. These data suggest that

inhibition of apoptosis by EGCG is associated with suppression of

JAK3/STAT3 pathway.

EGCG inhibits STAT3 transcription and expression of
STAT3-regulated genes

STAT3 is considered as an oncogene because it is correlated

with tumorigenesis [7]. Therefore, it is necessary to determine the

effect of EGCG on STAT transcriptional activity. Pancreatic

cancer cells were transfected with pGreen fire1-STAT3 reporter

plasmid and treated with EGCG (0–80 mM). After incubation of

24 h, luciferase activity was determined by reporter assay. As

shown in Fig. 3A, EGCG inhibited STAT3 transcriptional activity

in a dose-dependent manner in pancreatic cancer AsPC-1 and

PANC-1 cells.

Figure 6. EGCG and gemcitabine inhibit cell viability and STAT3 target genes. (A), AsPC-1 and PANC-1 cells were treated with EGCG (0, 20,
40, 60 mM) with or without gemcitabine (0.5 mM) for 72 h. Cell viability was measured by XTT assay. Data represent mean 6 SD. * or ** = significantly
different from respective controls, P,0.05. (B), AsPC-1 and PANC-1 cells were treated with EGCG (0, 20, 40, 60 mM) with or without gemcitabine
(0.5 mM) for 72 h. Apoptosis was measured by TUNEL assay. Data represent mean 6 SD. * or ** = significantly different from respective controls,
P,0.05. (C), Inhibition of STAT3 target genes by EGCG and gemcitabine. AsPC-1 and PANC-1 cells were treated with EGCG (20 mM) or gemcitabine
(0.5 mM) for 48 h. The expression of VEGF, c-Myc, survivin and cyclin D1was was measured by qRT-PCR. Data represent mean 6 SD. * = significantly
different from respective controls, P,0.05.
doi:10.1371/journal.pone.0031067.g006
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Previous studies have shown that STAT3 can regulate the

expression of many gene products involved in proliferation, cell

survival, angiogenesis and anti-apoptosis [7]. For instance, VEGF,

Bcl-XL, c-Myc, Survivin and Cyclin D1 are regulated by STAT3

activation [17,36]. As illustrated in Fig. 3B, STAT3-regulated

genes, c-Myc, Survivin and Cyclin D1 were inhibited by EGCG in

AsPC-1 and PANC-1 cells. EGCG also decreased the expression

of VEGF in AsPC-1 cells, and Bcl-XL in PANC-1 cells. These data

demonstrate that EGCG can inhibit the expression of STAT3-

regulated genes in pancreatic cancer cells. These STAT-3 target

genes have been shown to regulate cell proliferation, cell cycle,

apoptosis and angiogenesis.

Inhibition of STAT3 enhances the inhibitory effects of
EGCG on cell motility and viability in pancreatic cancer cells

In this work, STAT3 shRNA was used to silence STAT3 gene

expression in AsPC-1 and PANC-1 cells. STAT3 shRNA inhibited

the expression of STAT3 in both AsPC-1 and PANC-1 cells as

demonstrated by the Western blot analysis (Fig. 4A). To examine

the effects of EGCG on pancreatic cancer cells, scratch and cell

viability assays were performed using both scrambled and STAT3

shRNA cells. In scratch assay, the inhibitory effects of EGCG on

the migration of AsPC-1 cells were enhanced by inhibiting STAT3

gene expression (Fig. 4B). EGCG and STAT3 shRNA alone

reduced percent of viable AsPC-1 and PANC-1 cells in a dose-

dependent manner (Fig. 4C). Interestingly, the inhibitory effects of

EGCG on cell viability were further enhanced by STAT3 shRNA

in both the cell lines.

We next examined the effects of STAT3 shRNA on the

regulation of STAT3-target genes by EGCG. EGCG inhibited

the expression of STAT3-regulated gene Cyclin D1 in both AsPC-

1/scrambled and PANC-1/scrambled cells (Fig. 5 and B). STAT3

shRNA completely inhibited the expression of cyclin D1 in both

pancreatic cancer cell lines in the presence or absence of EGCG.

EGCG also inhibited he expression of Bcl-XL and c-Myc in PANC-

1/scrambled cells. Bcl-XL and c-Myc were also inhibited in PANC-

1/STAT3 shRNA cells compared to PANC-1/Scrambled cells.

However, EGCG was unable to further inhibit the expression of

Bcl-XL and c-Myc in PANC-1/STAT3 shRNA cells. These data

suggest that EGCG can regulate pancreatic cancer cell motility and

viability which are associated with STAT3 pathway.

Gemcitabine synergizes with EGCG to inhibit cell viability
and induce apoptosis in pancreatic cancer cells

Gemcitabine has emerged as a popular chemotherapeutic agent

in the treatment of advanced and metastatic pancreatic cancer,

and the benefit of this single-agent is small but significant in the

improvement of median overall survival [19]. To test the effects of

gemcitabine with EGCG on cell viability, pancreatic cancer cells

were treated with gemcitabine (0.5 mM) with or without increasing

concentrations of EGCG (0–60 mM) for 72 hours. As shown in

Fig. 5A, cell viability was inhibited by EGCG and gemcitabine

alone, and the inhibitory effects of gemcitabine on cell viability

were further enhanced by EGCG in these two cell lines (Fig. 6A).

We next examined the interactive effects of EGCG with

gemcitabine on apoptosis in both AsPC-1 and PANC-1 cell lines

(Fig. 6B). EGCG induced apoptosis in both the cell lines in a dose-

dependent manner. Similarly, gemcitabine induced apoptosis in

both AsPC-1 and PANC-1 cells. All the doses of EGCG further

enhanced the effects of gemcitabine on apoptosis. These data

suggest that EGCG can be combined with gemcitabine to treat

pancreatic cancer patients.

We next examined the effects of EGCG and gemcitabine on the

expression of c-Myc and cyclin D1 in AsPC-1 and PANC-1 cells

(Fig. 6C). EGCG and gemcitabine alone inhibited the expression

of VEGF, c-Myc, survivin and cyclin D1was in both the cell lines.

The combination of EGCG and gemcitabine had additive effects

on these target genes. These data suggest that EGCG can enhance

the therapeutic potential of gemcitabine in pancreatic cancer cells

by inhibiting STAT3.

JAK3 inhibitor CP690550 inhibits cell viability in
pancreatic cancer cells

CP690550 is a novel JAK3 inhibitor and expected to target

JAK3, which is expressed generally only in immune cells and is only

bound by gamma-chain-bearing cytokine receptors involved in the

JAK/STAT signaling pathway [37]. We next examined the effects

of CP690550 on cell viability in AsPC-1 and PANC-1 cells (Fig. 7).

CP690550 inhibited cell viability in both the cell lines in a dose-

dependent manner. These data suggest that CP690550 can be a

potential anticancer drug for the treatment of pancreatic cancer.

CP690550 synergizes with EGCG to inhibit cell viability in
pancreatic cancer cells

Since CP690550 induced apoptosis in pancreatic cancer cells,

we next sought to examine the interactive effects of CP690550 and

EGCG on cell viability and apoptosis of pancreatic cancer cells

(Fig. 8). To test the effects of CP690550 with EGCG on cell

viability and apoptosis, pancreatic cancer cells were treated with

CP690550 (0.5 mM) and increasing concentrations of EGCG (0–

60 mM) for 72 hours. As shown in Fig. 8A and B, EGCG and

Figure 7. CP690550 inhibits cell viability of AsPC-1 and PANC-1
cells. (A), AsPC-1 cells were seeded in 96 well plates at 46104 cells per
well and treated with CP690550 (0–15 mM) for 72 h. Cell viability was
measured by XTT assay. Data represent mean 6 SD. * = significantly
different from control, P,0.05. (B), PANC-1 cells were seeded in 96 well
plates at 46104 cells per well and treated with CP690550 (0–15 mM) for
72 h. Cell viability was measured by XTT assay. Data represent mean 6
SD. * = significantly different from control, P,0.05.
doi:10.1371/journal.pone.0031067.g007

STAT3 Signaling in Pancreatic Cancer

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31067



CP690550 inhibited cell viability and induced apoptosis in both

AsPC-1 and PANC-1 cell lines. Interestingly, EGCG further

enhanced the effects of CP690550 on cell viability and apoptosis in

both the cell lines. These data suggest that CP690550 can be

combined with EGCG to target pancreatic cancer cells.

Since EGCG and CP690550 inhibited cell viability and induced

apoptosis, we next sought to examine their effects on STAT3

target genes. EGCG and CP690550 inhibited the expression

VEGF, c-Myc, survivin and cyclin D1was in both the cell lines

(Fig. 8C). The combination of EGCG and CP690550 had additive

effects on these target genes. These data suggest that EGCG can

enhance the therapeutic potential of CP690550 in pancreatic

cancer cells by inhibiting STAT3.

Discussion

Pancreatic cancer belongs to the group of extremely aggressive

human cancers; conventional treatments have little impact. In 2010,

it accounts for only 3% of new cancer cases in the United States, and

the fourth leading cause of cancer death. Only 6 percent of patients

will survive 5 years after diagnosis [38]. Various factors, which

include its aggressive nature, lack of early screening, absence of

therapeutic targets, and lack of effective treatments, make the

pancreatic cancer become one of the most difficult cancers to treat.

In recent years, the clinicians and cancer scientists have made some

significant advances into the management of the disease, especially

discovery and development of targeted therapeutics [39].

Many oncogenic molecular pathways including EGF/EGFR,

Ras-Raf-MEK, PI3K/Akt, JAK/STAT, p16INK4A/retinoblas-

toma, Smad4/TGF-b, and hedgehog signaling pathways, have

been reported to be involved in the pathogenesis of pancreatic

cancer [40,41,42,43,44,45]. Among them, STAT3 is thought by

many researchers as a suitable therapeutic target for drug

discovery because constitutive activation of STAT3 alone is

sufficient to induce the relevant disease, the inhibition of STAT3

signaling could suppress and reverse the development of relevant

disease, and the molecular mechanism of tumorigenesis caused by

STAT3 pathway has been well defined.

Chemoprevention was first defined by Sporn in 1976 and refers

to the use of natural or synthetic agents to reverse, suppress or

Figure 8. EGCG and CP690550 inhibit cell viability and STAT3 target genes. (A), AsPC-1 and PANC-1 cells were treated with EGCG (0, 20, 40,
60 mM) with or without CP690550 (0.5 mM) for 72 h. Cell viability was measured by XTT assay. Data represent mean 6 SD. * or ** = significantly
different from respective controls, P,0.05. (B), AsPC-1 and PANC-1 cells were treated with EGCG (0, 20, 40, 60 mM) with or without CP690550 (0.5 mM)
for 72 h. Apoptosis was measured by TUNEL assay. Data represent mean 6 SD. * or ** = significantly different from respective controls, P,0.05. (C),
Inhibition of STAT3 target genes by EGCG and CP690550. AsPC-1 and PANC-1 cells were untreated or treated with EGCG (20 mM) or CP690550
(0.5 mM) for 48 h. The expression of VEGF, c-Myc, survivin and cyclin D1 was measured by qRT-PCR. Data represent mean 6 SD. * = significantly
different from respective controls, P,0.05.
doi:10.1371/journal.pone.0031067.g008
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prevent carcinogenic progression [46]. It has been proved as a

rationale and promising strategy by several recent epidemiological

studies in preventing cancer in high-risk populations. Because

natural compounds are generally cheaper and safer than synthetic

ones, there is growing interest in the possible therapeutic potential

of natural products against cancer. Many epidemiological,

preclinical, and clinical studies have demonstrated the cancer-

preventive effects of green tea [47,48,49,50]. The chemothera-

peutic and chemopreventive effects of green tea have been

attributed to the polyphenol components, especially EGCG, which

is the most abundant polyphenol in green tea and accounts for

more than 40% of the total polyphenol mixture [51]. In the recent

few decades, it was under intensive investigation by using animal

models of carcinogenesis and cultured tumor cell lines [29,52].

EGCG has demonstrated remarkable chemopreventive and

chemotherapeutic potential against various types of cancers, e.g.

skin, lung, breast, colon, prostate, stomach, and pancreas, by

modulating the intracellular signaling network [30,51,52,53].

In the present study, we provide strong evidence that EGCG

can inhibit cell viability and induce apoptosis of pancreatic cancer

cells. First, we found that the expression and activation of STAT3

were inhibited by EGCG, while the induction of caspase-3 activity

and PARP cleavage were enhanced. Moreover, this compound

also inhibited the invasion and migration of pancreatic cancer

cells, which has been reported to be implicated with STAT3 [54].

These results demonstrate that EGCG has a marked anti-cancer

effect on pancreatic cancer at least in part by the inhibition of

STAT3 signaling pathway. Second, we found that the STAT3

shRNA can alone reduce cell motility and viability of cancer cells.

Furthermore, STAT3 shRNA can enhance the inhibitory effects of

EGCG on cell motility and viability in pancreatic cancer cells,

suggesting that EGCG can influence some other gene/pathway

besides STAT3.

We also found that EGCG could suppress the expression of

STAT3-downstream genes, which include the angiogenic protein

VEGF, cell proliferative Cyclin D1, oncogenic transcription factor

c-Myc, and several anti-apoptotic proteins, including survivin and

Bcl-XL. Some genes are prominent targets for both NF-kB and

STAT3, such as Cyclin D1, Bcl-XL and c-Myc, while survivin is

STAT3-dependant. VEGF is also controlled by STAT3 and might

be indirectly regulated by NF-kB via HIF-1a [55,56,57,58]. The

EGCG-medicated inhibition of Cyclin D1, VEGF, and BclXL

transcription is consistent with previous reports [59,60,61], which

might result from the suppression of EGCG against both the NF-

kB and STAT3 pathways [62]. Similarly, the EGCG inhibition on

Wnt signaling and PI3K/Akt could also contribute to the down-

regulation of cMyc and survivin, respectively [63,64].

Pancreatic cancer is poorly treated by conventional chemother-

apies including gemcitabine due to the profound chemoresistance

through widely expressed HMGA1 [65]. CP690550 (Tasocitinib),

an orally active immunosuppressant, is being developed by Pfizer

for the treatment of inflammatory bowel disease, dry eyes,

rheumatoid arthritis, ankylosing spondylitis, psoriasis, psoriatic

arthritis, and for the prevention of transplant rejection

[21,66,67,68,69,70,71]. CP690550 specifically inhibits JAK3,

which has a pivotal role in cytokine signal transduction that

governs lymphocyte survival, proliferation, differentiation, and

apoptosis. Recent studies have demonstrated the anticancer

activity of CP690550 in various cancers [72]. In this study, we

found that gemcitabine, CP690550 and EGCG alone inhibited

cell viability, induced apoptosis and attenuated STAT3-regulated

gene transcription in AsPC-1 and PANC-1 cells. EGCG further

enhanced the effects of gemcitabine or CP690550 on cell viability,

apoptosis and on the expression of STAT3-target genes. Our

results provide a new application method, in which the use of

EGCG can enhance the therapeutic effects of anticancer drugs

while possibly reducing their side effects.

In conclusion, our findings provide unprecedented insights into

the STAT3 signaling pathway by which EGCG inhibits viability,

invasion and migration, and induces apoptosis in pancreatic

cancer cells. Inhibition of STAT3 by shRNA could suppress

viability of cancer cells, and down-regulate the STAT3-target

genes. Most importantly, EGCG further enhanced the therapeutic

potential of gemcitabine and CP690550 against pancreatic cancer.
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