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Abstract

The central role of epigenomic alterations in carcinogenesis has been widely

acknowledged, particularly the impact of DNA methylation on gene expression

across all stages of carcinogenesis is considered vital for both diagnostic and

therapeutic strategies. Dietary phytochemicals hold great promise as safe

anticancer agents and effective epigenetic modulators. This study was designed

to investigate the potential of a phytochemical, quercetin as a modulator of the

epigenetic pathways for anticancer strategies. Biochemical activity of DNA

methyltransferases (DNMTs), histone deacetylases (HDACs), histone methyl-

transferases (HMTs), and global genomic DNA methylation was quantitated by

an enzyme‐linked immunosorbent assay based assay in quercetin‐treated HeLa

cells. Molecular docking studies were performed to predict the interaction of

quercetin with DNMTs and HDACs. Quantitative methylation array was used to

assess quercetin‐mediated alterations in the promoter methylation of selected

tumor suppressor genes (TSGs). Quercetin induced modulation of chromatin

modifiers including DNMTs, HDACs, histone acetyltransferases (HAT) and

HMTs, and TSGs were assessed by quantitative reverse transcription PCR (qRT‐
PCR). It was found that quercetin modulates the expression of various

chromatin modifiers and decreases the activity of DNMTs, HDACs, and HMTs

in a dose‐dependent manner. Molecular docking results suggest that quercetin

could function as a competitive inhibitor by interacting with residues in the

catalytic cavity of several DNMTs and HDACs. Quercetin downregulated global

DNA methylation levels in a dose‐ and time‐dependent manner. The tested

TSGs showed steep dose‐dependent decline in promoter methylation with the

restoration of their expression. Our study provides an understanding of the

quercetinʼs mechanism of action and will aid in its development as a candidate

for epigenetic‐based anticancer therapy.
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1 | INTRODUCTION

Disruption of the epigenome is now accepted as a
fundamental mechanism in cancer and studies have
documented that epigenetic alterations occur during all
stages of carcinogenesis particularly, in the initial stages of
onset.1,2 Epigenetic mechanisms include DNA methyla-
tion, histone modification, and RNA‐based mechanisms.
DNA methylation of CpG islands by DNA methyltrans-
ferases (DNMTs), is one of the most well‐studied
epigenetic events.3,4 Several studies have documented
increased expression of DNMTs and identified aberrantly
methylated regions in several cancers.5,6 Modifications of
histone proteins mediated by histone acetyltransferases,
histone deacetylases (HDACs), histone phosphorylases,
histone methyltransferases (HMTs), histone demethylases,
and histone ubiquitinases offer another important regula-
tory platform for gene transcription.

The equilibrium between the action of opposing
enzyme families is central for normal gene expression
while disequilibrium has been associated with cancer.7

HDACs which mediate deacetylation of histones are the
best‐studied histone modifiers, which cause transcrip-
tional silencing of tumor suppressor genes (TSGs).8 DNA
methylation elevates histone acetylation levels thus
demonstrating that DNMT and HDAC activity are
interlinked and crucial.9 Histone phosphorylation also
plays a central role in the regulation of genes involved in
apoptosis and mitosis.10 HMTs may exert either repressive
or permissive marks depending on the site of methylation.
H3K9 (eg, G9A) and H3K27 (eg, EZH2) methyltrans-
ferases are overexpressed and lead to aberrant TSG
silencing.11 Many TSGs are silenced via a synergistic
series of epigenetic events including aberrant DNA
hypermethylation and suppressive chromatin modifica-
tions.12,13 Functional silencing of TSGs can contribute
greatly towards cellular dysfunction leading to cancer.
Several groups of investigators have shown that numerous
genes such as RASSF1A, MLH1, BRCA1, WIF‐1, CDH1,
MGMT, and APC are hypermethylated and can be used as
biomarkers or indicators of prognosis.14

Epigenetic processes can be reversed and this princi-
ple makes it a potential target for therapeutic interven-
tion.15 Several studies demonstrate that silenced TSGs in
cervical cancer cells are reactivated by the use of
epigenetic inhibitors.16,17 Conventional cancer therapies
and existing epigenetic modifiers are characterized by
low specificity as well as substantial cellular and clinical
toxicity, resulting in side effects and/or poor quality of
life for the patient.18 This clearly indicates the need to
identify safe chemopreventive and chemotherapeutic
agents that can effectively reverse epigenetic changes
with a high degree of specificity.

Extensive epidemiological evidence suggests that a
diet of fruit and vegetables can prevent a range of human
cancers.19 A wide range of experimental as well as
epidemiological data encourages the use of dietary agents
to impede or delay different stages of cancer19 These have
been further validated by in vitro studies that demon-
strate the anticancer effect of fruit and vegetables derived
phytochemicals including their ability to modulate
epigenetic pathways.16,17 While the synthetic epigenetic
modifiers that are currently under trial can be categor-
ized as either DNMT inhibitors or HDAC inhibitors,
many studies have shown that dietary agents, by contrast,
may be able to modulate both HDAC and DNMT
enzymes and could, therefore, be a more potent
therapeutic option.16,17 Natural dietary compounds have
a high safety profile and provide an alternate approach to
cancer prevention and treatment.

Earlier, we have shown that the ubiquitous phyto-
chemical, quercetin brings about antiproliferative, anti‐
migratory, and proapoptotic effect in human cervical
cancer cells, HeLa. This study was designed to investigate
the epigenetic modulation mediated by quercetin and to
better understand its mechanism of action.

2 | MATERIALS AND METHODS

2.1 | Cell culture

The human cervical carcinoma cell line, HeLa used in
this study was a kind gift from Dr. Tahir Rizvi, UAE
University, Al Ain, UAE. The cells were maintained in
Dulbeccoʼs modified Eagleʼs medium (Sigma) to which
10% fetal bovine serum (Sigma) and 100X Pen‐strep
(Sigma) were added. A humidified atmosphere of 5% CO2

in air at 37°C was maintained.

2.2 | Reagent preparation

Quercetin (Sigma) was made into a 66.17 mM stock using
dimethyl sulfoxide, aliquoted, and stored at −20°C. The
working concentration of 1 mM was made in complete
medium. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetra-
zolium bromide (MTT) assay was performed and
100 μM of quercetin in 24 hours was identified as the
EC50 of quercetin in HeLa cells (manuscript submitted).
Two sub‐lethal doses, (25 and 50 μM) were selected to
understand the effect of quercetin on epigenetic mechan-
isms in HeLa cells. Twenty‐five micromolar quercetin has
87% cell viability at 24 hours and 80% viability at
48 hours; whereas, 50 μM quercetin has 77% cell viability
at 24 hours and 52% viability at 48 hours (manuscript
submitted).
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2.3 | DNMT activity assay

Nuclear extracts from untreated HeLa cells were pre-
pared using EpiQuik Nuclear Extraction Kit (Epigentek)
as per the manufacturerʼs protocol. The effect of various
doses of quercetin (25 and 50 μM) on DNMT activity was
measured using the Epiquik DNMT Activity Assay Kit
(Epigentek) as per the manufacturerʼs protocol. Briefly,
various doses of quercetin were added to the untreated
nuclear extract in substrate‐coated assay plate and
incubated for 1.5 hours at 37°C to allow the action of
the enzyme. The products formed during the incubation
were quantitated by an enzyme‐linked immunosorbent
assay (ELISA) based assay and compared to the untreated
control wells. The percentage of inhibition in comparison
to control was then calculated following the manufac-
turerʼs guidelines and plotted as a graph.

2.4 | HDAC activity assay

Nuclear extracts from untreated HeLa cells were pre-
pared using EpiQuik Nuclear Extraction Kit (Epigentek)
as per the manufacturerʼs protocol. The effect of various
doses of quercetin (25 and 50 μM) on HDAC activity was
measured using the Epiquik HDAC Activity Assay Kit
(Epigentek) as per the manufacturerʼs protocol. Briefly,
various doses of quercetin were added to the untreated
nuclear extract in substrate‐coated assay plate and
incubated for 1 hour at 37°C to allow the action of the
enzyme. The products formed during the incubation
were quantitated by an ELISA based assay and compared
to the untreated control wells. The percentage of
inhibition in comparison to control was then calculated
following the manufacturerʼs guidelines and plotted as
a graph.

2.5 | HMT‐H3K9 activity assay

Nuclear extracts from untreated HeLa cells were pre-
pared using EpiQuik Nuclear Extraction Kit (Epigentek)
as per the manufacturerʼs protocol. The effect of various
doses of quercetin (25 and 50 μM) on HMT‐H3K9 activity
was measured using the Epiquik HMT‐H3K9 Activity
Assay Kit (Epigentek) as per the manufacturerʼs protocol.
Briefly, various doses of quercetin were added to the
untreated nuclear extract in substrate‐coated assay plate
and incubated for 1.5 hours at 37°C to allow the action of
the enzyme. The products formed during the incubation
were quantitated by an ELISA based assay and compared
to the untreated control wells. The percentage of
inhibition in comparison to control was then calculated
following the manufacturerʼs guidelines and plotted as
a graph.

2.6 | Molecular modeling studies of
DNMT, HDAC, G9A, and EZH2 proteins

Docking of quercetin with DNMT1, DNMT3A, DNMT3B,
HDAC1, HDAC2, HDAC3, HDAC4, HDAC7, and
HDAC8 was performed as described by us earlier.20 The
interaction of 5‐Aza‐dC, (a known inhibitor of DNMTs)
and TSA (known inhibitor of HDACs) was also
previously described by us and used as a reference to
compare quercetinʼs interaction. Likewise, G9A (PDB ID:
5VSC) and EZH2 (PDB ID: 5LS6) structure were retrieved
from RCSB and prepared for docking.21,22 Quercetin was
docked to these protein structures using SwissDock
server23 and the least energy model was used for further
analysis using UCSF‐Chimaera.24

2.7 | Global DNA methylation
quantitation assay

Approximately, 2 × 106 cells were treated with quercetin
(25 and 50 μM for 24 and 48 hours) after which DNA was
isolated using the GenElute Mammalian Genomic DNA
Miniprep Kit (Sigma) following manufacturerʼs protocol.
To quantitate the amount of methylated DNA found
before and after treatment with quercetin, the Methyl-
Flash Methylated DNA Quantification Kit (Epigentek)
was used. The kit is based on the detection of methylated
DNA by 5‐mC antibody, which can be estimated color-
imetrically. Optical density values are proportional to the
amount of methylated DNA irrespective of its position in
the genome. The levels of methylation are represented as
percentage of control.

2.8 | Quantitation of expression of
chromatin modifiers using qRT‐PCR
A total of 2 × 106 cells were plated and treated with 25
and 50 μM quercetin for 48 hours. Cells were then
harvested, and the total RNA was isolated using
GenElute Mammalian Total RNA Kit (Sigma) as per
the manufacturerʼs protocol. Complementary DNA was
prepared by using 2 μg RNA as starting template using
the High‐Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) and used as a template for qRT‐
PCR. Untreated HeLa cells were used as control. Human
Epigenetic Chromatin Modification Enzymes RT² Profi-
ler PCR Array (Qiagen) was used to profile the expression
of genes that modify DNA and histones thereby altering
the structure of chromatin and influencing gene expres-
sion. This includes DNMTs, demethylases, histone
acetylases, deacetylases, methylases, histone phosphor-
ylases, and ubiquitinases. Similarly, the expression of
some of the TSGs whose methylation levels were reduced
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were tested for alterations in expression using a custom
designed TaqMan‐based qRT‐PCR array (Thermo Fisher
Scientific). Normalization was performed with the house-
keeping gene, glyceraldehyde 3‐phosphate dehydrogen-
ase for the chromatin modifiers array, while global
normalization was performed for the custom TSG array.
Fold change was calculated by ΔΔCT analysis in
comparison to the untreated control, using the DataAssist
Software (ThermoFisher Scientific) and expressed as a
graph. Fold changes above 1.5 was considered as
upregulation, while fold change below 0.5 was considered
downregulation in keeping with the current qRT‐PCR
analysis recommendations. Statistical significance was
calculated on the mean of three experiments using two‐
tailed t test with P≤ .05.

2.9 | Quantitation of promoter
methylation status of selected TSGs

EpiTect Methyl II PCR Arrays (Qiagen) facilitate the
concurrent detection of the promoter DNA methylation
of several TSGs. A total of 2 × 106 cells were plated and
treated with 25 and 50 μM quercetin for 48 hours. Cells
were harvested, and genomic DNA was isolated using
GenElute Mammalian Genomic DNA Miniprep Kit
(Sigma) as per the manufacturerʼs protocol. Untreated
cells were used as control. 1 μg of DNA from each sample
was then subjected to restriction digestion with the
EpiTect II DNA Methylation Enzyme Kit (Qiagen)
following the manufacturerʼs protocol. The MethylScreen
technology is based on the differential cleavage of target
sequences by using two different restriction endonu-
cleases. These restriction enzymes differ in their depen-
dence on the presence or absence of methylated cytosines
in their respective recognition sequences. The restriction
digest products were used as the template for the Human

Tumor Suppressor Genes EpiTect Methyl II Signature
PCR Array (Qiagen). This quantitative polymerase chain
reaction array results were analyzed to quantitate the
amount of DNA remaining after restriction digest and is
used to build the methylation profile for each gene. The
promoter methylation levels of the tested TSGs in
quercetin‐treated cells and untreated HeLa cells was
represented as a graph. Statistical significance was
calculated on the mean of three experiments using two‐
tailed t test with P≤ .05.

2.10 | Statistical analysis

All data are expressed as means ± SD of at least three
experiments. One‐way analysis of variance followed by
two‐tailed t test was used to evaluate the results of all
biochemical assays and significance was established at
P≤ .05.

3 | RESULTS

3.1 | Quercetin treatment reduces
DNMT activity

Quercetin was found to inhibit the activity of DNMTs
significantly in a dose‐dependent manner. When nuclear
extracts were incubated with increasing doses of querce-
tin (25 and 50 μM) they were found to inhibit the
function of the DNMTs by 32% and 49% respectively, in
comparison to untreated control as shown in Figure 1A.

3.2 | Quercetin treatment reduces
HDAC activity

Quercetin was found to reduce the activity of nuclear
HDACs significantly in a dose‐dependent manner

FIGURE 1 Effect of quercetin on activity of DNMT, HDAC, and HMT H3K9 in HeLa cells. A, Twenty‐five and fifty micromolar
quercetin‐treated HeLa cells demonstrate significant inhibition of DNMT activity in a dose‐dependent manner. B, Twenty‐five and fifty
micromolar quercetin‐treated HeLa cells demonstrate significant inhibition of HDAC activity in a dose‐dependent manner.
C, Twenty‐five and fifty micromolar quercetin‐treated HeLa cells demonstrate significant inhibition of HMT H3K9 activity in a
dose‐dependent manner. Values are represented in comparison to untreated control and are means ± SD of three independent experiments.
(P< .05). DNMT, DNA methyltransferase; HDAC, histone deacetylase; HMT, histone methyltransferase
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(Figure 1B). When nuclear extracts were incubated with
increasing doses of quercetin (25 and 50 μM), they were
found to inhibit the function of the HDACs by 47% and
62% in comparison to untreated control.

3.3 | Quercetin treatment reduces HMT
H3K9 activity

Quercetin is able to reduce the activity of the HMTs that
can add between one and three methyl groups to the
ninth lysine of histone 3. Nuclear extracts were incubated
with increasing doses of quercetin (25 and 50 μM), were
found to inhibit the function of the HMT H3K9 by 63%
and 71% as shown in Figure 1C.

3.4 | Quercetin interacts with the
DNMT family and functions as a
competitive inhibitor

The docking results strongly suggest that the preferred
binding of quercetin on DNMT3A and DNMT3B is
within the substrate binding cavity and could competi-
tively inhibit the protein by preventing the entry of the
natural ligand into the active site (Figure 2). Docking
results of DNMT1 indicates that it may not be competi-
tively inhibited by quercetin. The residues potentially
interacting with quercetin are listed in Table 1.

3.5 | Quercetin interacts with HDACs
and functions as a competitive inhibitor

Docking results indicate that the binding of quercetin is
within the substrate binding cavity of various HDAC
proteins, namely HDAC2, HDAC8, HDAC4, and HDAC7
and could competitively inhibit their activity (Figure 3
and Table 1). The zinc ion is known to play a crucial

catalytic role and in all cases the ligand was found to
dock within 5 Å of the zinc ion.

3.6 | Quercetin interacts with EZH2 and
functions as an inhibitor

Docking results indicate that quercetin is able to mimic
the pose of established co‐crystallized inhibitor of EZH2
(seen in the PDB structure) (Figure 4A and Table 1).
EZH2 plays an important role in DNMT1 recruitment
and this interaction could potentially abrogate EZH2
binding with DNMT, as they will compete for binding at
the same location.

3.7 | Quercetin interacts with G9A and
functions as an inhibitor

Docking results indicate that quercetin is able to mimic the
pose of established co‐crystallized inhibitor of G9A (seen in
the PDB structure) (Figure 4B and Table 1). DNMT1 binds
to G9A25; this binding cavity is the same as the one in
which quercetin was observed to dock highlighting its
potential to inhibit G9A activity. The decreased HMT H3K9
activity appears to be well correlated with the observed
inhibitory action of quercetin

3.8 | Quercetin treatment modulates
the expression of various enzymes and
chromatin modifiers involved in the
epigenetic pathway

Quercetin was found to modulate the expression of
several genes in the epigenetic pathway. Keeping in
mind, the fold change cut‐off of 1.5 and 0.5 for down-
regulation, a shortlist of significant changes was com-
piled. Quercetin was found to downregulate DNMTs,

FIGURE 2 Molecular docking analysis of quercetin with DNMT family of enzymes. The predicted interaction of quercetin (blue) with
the active site residues (cyan) in the substrate binding cavity of DNMT3A and DNMT3B is shown. Catalytic residue is represented in green.
DNMT, DNA methyltransferase
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HDACs, and histone phosphorylases. It showed a gene‐
dependent modulation of HMTs, histone acetylases and
ubiquitinases. Twenty‐five micromolar quercetin down-
regulated the expression of HDAC11, KDM6B, DOT1L,
HDAC10, HDAC5, HDAC6, HDAC7, DNMT3A, ESCO1,

AURKB, AURKA, DNMT1, AURKC, DNMT3B, NEK6,
and KDM5B. It increased the expression of ESCO2 and
DZIP3. Whereas, 50 μM quercetin downregulated the
expression of AURKC, HDAC5, AURKA, DNMT3A,
AURKB, HDAC11, ESCO1, DOT1L, RPS6KA3, KDM5B,

TABLE 1 Quercetin interacts with several epigenetic enzymes and may inhibit their action. The energy of the docked model, interacting
residues within 5°A of quercetin and its distance from the catalytic residue is listed

Enzyme
Fullfitness
value Interacting residues

Distance of quercetin from catalytically
important residue and hydrogen‐bonded
interactions

DNMT3A −1553.7292 PHE636, ASP637, GLY638, ILE639, SER659, GLU660,
VAL661, CYS662, SER665, ASP682, VAL683,
ARG684, GLY703, PRO705, CYS706, THR723,
LEU726, ARG887, SER888

4.58°A from CYS706

2.46°A H‐bond with VAL683;

2.53°A H‐bond with PHE636

DNMT3B −1872.4425 PHE581, ASP582, GLY583, ILE584, SER604, GLU605,
VAL606, CYS607, SER610, ASP627, VAL628,
ARG629, GLY648, PRO650, CYS651, ASN652,
THR668, LEU671, ARG832, SER833

4.47°A from CYS651

2.48°A H‐bond with VAL628

HDAC2 −1882.1656 ASP104, HSD146, GLY154, PHE155, HSE183,
GLU208, TYR209, PHE210, LEU276, GLY277,
TYR308

4.79°A from HSD146

HDAC4 −1617.528 PRO676, GLU677, ARG681, SER758, ASP759,
PRO800, HIS802, HIS803, MET810, GLY811,
PHE812, ASP840, PHE871, PRO942, LEU943,
GLY974, GLY975, HIS976

2.19°A from HIS803

HDAC7 −1680.826 PRO542, ASP626, PRO667, HSD669, HSD670,
GLY678, PHE679, CYS680, ASP707, ASN736,
PHE737, PHE738, ASP801, PRO809, LEU810,
GLU840, GLY841, GLY842, HIS843

2.18°A from HIS670

HDAC8 −1724.0481 LYS33, ILE34, PRO35, ARG37, TYR100, PRO103,
TYR111, TRP141, PHE152, PRO273, MET274,
GLY305, TYR306, LEU308

3.18°A from TYR306

EZH2 −4027.2224 ILE109, MET110, TYR111, SER112, TRP113, ALA622,
GLY623, TRP624, GLY625, CYS663, PHE665,
THR678, ARG679, ARG685, PHE686, ALA687,
ASN688

4.13°A from ARG679

G9A −1475.7151 LYS1047, MET1048, GLY1049, ASN1112, HIS1113,
TYR1154, PHE1158, TRP1159, PHE1166, THR1167,
CYS1168, GLN1169, CYS1170

2.64°A from TYR1154

2.3°A H‐bond with HSE1113

Abbreviations: DNMT, DNA methyltransferase; HDAC, histone deacetylase

FIGURE 3 Molecular docking analysis of quercetin with HDAC family of enzymes. The predicted interaction of quercetin (blue) with
the active site residues in the substrate binding cavity of HDAC2, HDAC4, and HDAC7. Quercetin docks in the second tunnel (orange) of
HDAC8 similar to the co‐crystallized inhibitor (red). Catalytic residue is represented in green. HDAC, histone deacetylase
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NEK6, HDAC6, EHMT2, HDAC7, HDAC10, DNMT3B,
HAT1, HDAC3, DNMT1, HDAC1, and HDAC2. It
increased the expression of SETD7, ESCO2, and DZIP3.
The graphs are shown in Figure 5.

3.9 | Quercetin treatment reduces
global DNA methylation

Quercetin mediates a time‐ and dose‐dependent decrease
in the global methylation levels of HeLa cells. Twenty‐
five micromolar treatment in 24 hours brings close to a
50% reduction in methylation, whereas after 48 hours the
methylation level is 34% of the control. Fifty‐ micromolar
treatment for 24 hours and 48 hours reduces DNA

methylation to 36% and 15% respectively of the control
(Figure 6).

3.10 | Quercetin treatment reduces the
promoter methylation of tested TSGs

A decrease in the activity and expression of DNMTs
should reflect in the reduction in promoter CpG
methylation. To quantify any changes in the methylation
levels, the Methyl II PCR Array was performed after
restriction digestion using methylation‐sensitive and
methylation‐dependent enzymes. The methylation per-
centage of the tested TSGs decreased after 25 and 50 μM
quercetin treatment in comparison to untreated control

FIGURE 4 Molecular docking analysis of quercetin with EZH2 and G9A. A, The predicted interaction of quercetin (blue) with EZH2 is
represented which overlaps closely with the co‐crystallized inhibitor (red). A close‐up of the interaction is inset. B, The predicted interaction
of quercetin (blue) with G9A is represented which overlaps closely with the co‐crystallized inhibitor (orange)

FIGURE 5 Effect of quercetin on genes involved in chromatin modification. RQ plot of genes involved in the chromatin modification
whose expression in HeLa cells is modulated following treatment with 25 and 50 μM quercetin for 48 hours. Fold change was calculated by
ΔΔCT analysis in comparison to untreated control after global normalization Values are means ± SD of three independent experiments.
(P≤ .05). DNMT, DNA methyltransferase; HDAC, histone deacetylase; RQ, relative quantity
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(Figure 7). Fifty micromolar quercetin treatment de-
creased the methylation rates of the TSGs to APC (31%),
CDH1 (60%), CDH13 (3%), DAPK1 (7%), FHIT (7%),
GSTP1 (24%), MGMT (22%), MLH1 (4%), PTEN (11%),
RARB (19%), RASSF1 (9%), SOC51 (58%), TIMP3 (11%),
and VHL (10%). Likewise, 25 μM quercetin also de-
creased the methylation rates to APC (31%), CDH1 (62%),
CDH13(27%), DAPK1 (31%), FHIT (23%), GSTP1 (38%),
MGMT (42%), MLH1 (27%), PTEN (16%), RARB (30%),
RASSF1 (20%), SOC51 (64%), TIMP3 (13%),and VHL
(21%). In contrast, untreated control showed a higher

percentage of promoter methylation for the tested TSGs.
(Figure 7).

3.11 | Quercetin treatment restores TSG
expression fold change

To detect any increase in transcription following the
promoter demethylation of TSGs, qRT‐PCR was performed.
Fifty‐micromolar quercetin was found to have increased the
transcription of the TSGs, CDH1, MLH1, PTEN, SOC51,
TIMP3, and VHL in comparison to untreated control. The
fold change or relative quantity (RQ) plot following 25 and
50 μM treatments are shown in Figure 8.

4 | DISCUSSION

Aberrant epigenetic chromatin modification, leading to
TSG inactivation is recognized as a critical mechanism
impacting tumorigenesis. In this study, quercetin was
found to modulate the expression and activity of several
epigenetic enzymes. MTT assay established the EC50 of
quercetin in HeLa cells as 100 μM in 24 hours (manu-
script submitted); therefore, two sub‐lethal doses, 25 and
50 μM quercetin were used in this study.

The central role in epigenetic regulation is played by
the DNMT family of enzymes. DNMT1, 3A and 3B are
overexpressed in cervical cancer cells when compared
with normal cervical epithelium and is correlated to
disease progression.5 Quercetin was found to bring about
a significant decrease in the enzymatic activity of DNMTs

FIGURE 6 Effect of quercetin on global DNA methylation in
HeLa cells. Quercetin (25 and 50 μM) significantly decrease the
levels of global DNA methylation in HeLa cells in a time‐dependent
manner. The decrease is methylation level is represented as a
percentage of the untreated control. Values are means ± SD of
three independent experiments. (P≤ .05)

FIGURE 7 Effect of quercetin on 5′ CpG island promoter methylation of TSGs in HeLa cells using the Human Tumor Suppressor Genes
EpiTect Methyl II Signature PCR Array. Quercetin (25 and 50 μM) significantly decreases the promoter methylation levels in HeLa cells in
comparison to untreated control. Values are means ± SD of three independent experiments (P≤ .05)
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(Figure 1A). This decrease correlates well with the
downregulation of transcript levels of DNMT1, 3A and
3B (Figure 5). Further, docking studies suggest that
quercetin may competitively inhibit DNMT3A and
DNMT3B, with the consequent outcome of reduced
activity (Figure 2). The polycomb repressor protein,
EZH2, which is usually overexpressed in cervical cancer,
enables the recruitment of DNMT to target sites.26 It is
interesting, therefore, that docking results suggest that
quercetin binding to EZH2 may inhibit its ability to
recruit DNMT (Figure 4A). Studies report that the PI3K‐
AKT pathway and WNT pathway stabilize DNMT1 and
contribute to DNA methylation.27 Remarkably, quercetin
promotes a decrease in the PI3K and WNT activity
(manuscript submitted). Reduction in the expression and
activity of DNMTs has been found to have a positive
effect on re‐expression of TSGs, loss of cell proliferation,
and cell death.20

Overexpression of HDAC1, HDAC2, HDAC3,
HDAC6, and HDAC7 is found in cervical cancer and is
highly correlated to disease stage, progression, angiogen-
esis, and metastasis.28,29 Quercetin was able to reduce the
activity of class II HDACs significantly, with concomitant
downregulation of HDAC1, HDAC2, HDAC6, HDAC7,
and HDAC11 expression (Figures 1B and 5). Further,
docking results corroborate the reduced activity through
direct inhibition of class I HDACs (HDAC2 and HDAC8)
and class II HDACs (HDAC4 and HDAC7) (Figure 3).
HDAC suppression restores TSG expression, mitigates
growth, and induces apoptosis.20,30

The expression of histone acetyltransferases is also
modulated by quercetin (Figure 5). ESCO1 is required for
cell survival and proliferation after DNA damage as well
as to control gene expression.31 The decline in ESCO1
expression after quercetin treatment could explain the
cell cycle arrest and cell death seen after quercetin‐
induced DNA damage (data not shown). Quercetin
downregulates HAT1 expression (Figure 5); HAT1 is
upregulated in several cancers and in HeLa cells, it is
critical for clonogenicity.32 On the other hand, quercetin
upregulates ESCO2; whose function is to repress MMP2
and promote apoptosis.33

Histone phosphorylases, AURKA A, B, and C
contribute to tumor progression and are overexpressed
in cervical cancer.10 AURKA A, B and C contribute to
proliferation, crossing G2‐M checkpoint, metastasis, and
works co‐operatively with HDACs to regulate the protein
kinase B pathway.10 Transcript of all three genes are
significantly reduced after quercetin treatment in a
dose‐dependent manner (Figure 5). RPS6KA3, another
phosphorylase which serves as a cancer marker is
downregulated after quercetin treatment.7 NEK6 is over-
expressed in cervical cancer and aids in proliferation,

metastasis, and helps cross G2‐M checkpoint while
aiding in DNA damage recovery. It is significant that
reduced expression of NEK6 in cancer cells aids apoptosis
while normal cells are unaffected by it.34 Quercetin
brings about a dose‐dependent reduction in NEK6
expression (Figure 5).

HMTs are modulated by quercetin. SETD7, which
functions as a TSG and causes p53 activation; HPV
downregulates its expression.35 SETD7 was found to be
overexpressed after 50 μM quercetin treatment. DOT1/
KMT4 aids in proliferation, angiogenesis, and G2 stage
DNA damage response.36 DOT1L was also found to
decrease with quercetin treatment. G9A/EHMT2 (H3K9
histone methyltransferase) is an oncogene whose over-
expression is observed in cervical cancer and together
with DNMT causes repression of CDH1 and p5311 H3K9
methyltransferase activity was significantly reduced by
quercetin and this correlates well with the observed
downregulation of G9A expression and in silico docking
results suggestive of inhibition (Figures 4 and 5).
Silencing of G9A has been documented to limit migration
and promote apoptosis.37

KDM5B, a histone demethylase, particularly demethy-
lates mono‐, di‐ and tri‐methylated lysine 4 on histone
three. Upregulation of KDM5B is observed in several
cancers and represses TSG expression, its downregulation
suppresses proliferation, inhibits metastasis, and pro-
motes apoptosis.38 KDM5B is downregulated by querce-
tin (Figure 8).

To determine the functional consequence of the vast
spectrum of transcriptional changes mediated by quercetin,
global DNA methylation, and TSG promoter methylation
quantitation assays were performed. Quercetin mediates
dose‐ and time‐dependent decrease in global DNA methyla-
tion levels (Figure 6). Reversal of promoter methylation of
specific TSGs which are aberrantly silenced in cervical
cancer is an important therapeutic milestone. Dose‐
dependent exposure to quercetin resulted in reduced
promoter methylation of several TSGs (APC, CDH1,
CDH13, DAPK1, FHIT, GSTP1, MGMT, MLH1, PTEN,
RARB, RASSF1, SOC51, TIMP3, and VHL) (Figure 7).

DAPK, PTEN, RARβ, RASSF1A, CDH13, MLH1,
SOCS1, MGMT, VHL, and FHIT methylation levels are
found to be higher in cervical cancer samples than
normal and correlate positively with increasing tumor
grade.39-42 APC is a WNT pathway antagonist that
regulates migration and apoptosis; it is methylated and
silenced in cervical cancer.43 CDH1 (e‐cadherin) methy-
lation was reported to be significantly higher in cervical
carcinoma with two‐fold increases between CIN le-
sions.44 Further, knockdown of EZH2, was found to
decrease the H3K27me3 levels in CDH1 promoters and
re‐establish its expression.45 Several studies reported the
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decrease in methylation and re‐expression of FHIT,
DAPK, MGMT, APC, CDH1, and PTEN in cervical
cancer cells through the use of demethylating and
deacetylating agents.20,46

The transcription of these genes was then assessed by
qRT‐PCR. Quercetin was found to restore the expression
of CDH1, MLH1, PTEN, SOC51, TIMP3, and VHL
(Figure 8). The restoration of TSG expression following
epigenetic modulation explains the mechanism behind
the quercetinʼs anticancer effect, particularly its effect on
proliferation, colony formation, migration, and apoptosis.
Earlier studies from our lab have shown that inhibition of
DNMT and HDAC family by EGCG, sulforaphane, and
genistein, promotes anticancer response by lowering
promoter methylation and re‐expression of TSGs.20,47,48

These results are supported by the findings of other
groups along similar lines.46,49,50

Quercetin has been shown to induce apoptosis via
inhibition of DNA methylation, HDAC activity, and re‐
expression of genes in apoptotic pathway in HL60 and
U937 leukemia cell lines.51 Quercetin has been shown to
demethylate p16INK4a gene promoter in colon cancer,
RKO cell line.52 Similar epigenetic modulation was also
observed in esophageal cancer cell line, Eca9706.53 These
studies effectively highlight the ability of quercetin to
modulate epigenetic machinery particularly to reduce
promoter methylation and restore expression. However,
the bioavailability of quercetin is limited and affected by
several factors including gender, source, and form of
quercetin (reviewed in).54-56 Methods to improve bioa-
vailability are actively being sought and techniques such
as liposomal and nanoparticle‐based delivery and tar-
geted delivery to tumors are finding success.57-60

Our study successfully explains the mechanism of action
of quercetin, suppressing the expression and activity of
epigenetic modulators, with resultant reversal in TSG
promoter methylation and attendant restoration of TSG
expression. Further, this study comprehensively lists several
chromatin modifiers and TSGs, including DNMTs, HDACs,
AURKAs, ESCO1/2, NEK6, HAT1, CDH1, MLH1, PTEN,
SOC51, TIMP3, and VHL as targets of quercetin action.
These results corroborate our earlier investigation showing
the antiproliferative, anti‐migratory and proapoptotic effects
of quercetin (manuscript submitted).

5 | CONCLUSION

DNMTs and histone modifiers are the signatory molecules
of the epigenetic pathways and are increasingly being
studied as roadmaps for cancer treatment. This study
allows us to conclude that quercetin may be a powerful
arsenal in epigenetic‐based chemoprevention strategies.
The government and the scientific community have a
strong responsibility in ensuring that people are aware of
the advantages offered by natural dietary agents and take
the right steps in incorporating them into the national
public health programs. Incorporation of such dietary
agents into our regular diet will go a long way to ensuring
apt population‐wide chemoprevention strategies. Studies
on animal models will further help to substantiate the
efficacy of quercetin for therapeutic purposes.
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