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Abstract: Polyphenols are a broad group of bioactive phytochemicals with powerful antioxidant, anti-
inflammatory, immunomodulatory, and antiviral activities. Numerous studies have demonstrated
that polyphenol extracts obtained from natural sources can be used for the prevention and treatment
of cancer. Pomegranate peel extract is an excellent source of polyphenols, such as punicalagin,
punicalin, ellagic acid, and caffeic acid, among others. These phenolic compounds have antineo-
plastic activity in in vitro models of cervical cancer through the regulation of cellular redox balance,
induction of apoptosis, cell cycle arrest, and modulation of different signaling pathways. The current
review summarizes recent data from scientific reports that address the anticancer activity of the pre-
dominant polyphenol compounds present in PPE and their different mechanisms of action in cervical
cancer models.

Keywords: apoptosis; antiproliferation; anticancer; cell cycle arrest; cervical cancer; pomegranate
peel; ROS

1. Introduction

Worldwide, cervical cancer ranked fourth in incidence among the female population
in 2018, with 570,000 cases and 311,000 deaths [1]. The main risk factors associated with
the development of cervical cancer include HPV infection, age, tobacco use, use of oral
contraceptives, and food intake [2]. Most cases of cervical cancer are caused by high-risk
HPV infection causing DNA damage; however, recent studies have found that oxidative
stress is also involved in this effect [3]. Oxidative stress (OS) refers to an imbalance between
the production of reactive oxygen species (ROS) and the effectiveness of the antioxidant
system to counteract the damage. This imbalance has been observed in cancer patients,
even before the start of any treatment [4]. According to the National Cancer Institute,
there are currently various treatments against malignant neoplasms, such as chemotherapy,
radiotherapy, surgery for removal, immunotherapy, and hormonal therapy. However, not
all patients are candidates for these treatments and it is usually necessary to resort to a
combination of 2 or more therapies, which can have serious side effects on the patient’s body
and immune system. Furthermore, these conventional therapies increase the generation
of ROS, which can lead to toxic side effects in healthy tissues. This problem has led to
physicians and researchers developing new possible treatments for this pathology. One of
the most promising is the use of natural polyphenols for the development of anticancer
drugs [4–6]. Dietary polyphenols are found mainly in foods of plant origin, such as fruits,
vegetables, nuts, green tea, coffee, etc. [7]. The pomegranate (Punica granatum L.) is a
widely consumed fruit belonging to the tree of the same name from the Lythraceae family.
This berry is an excellent source of phytochemicals that have powerful antioxidant and
anti-inflammatory effects [8]. The pomegranate peel (PE) is the inedible part of the fruit
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and is considered industrial waste. However, this by-product represents more than 40% of
the total weight of the pomegranate and possesses numerous polyphenolic compounds at
higher levels than those found in the juice and seeds [9–11]. Several studies have reported
that polyphenols present in PPE have antiproliferative and antitumor activities in different
cancer lines [12–14]. The aim of this review was to evaluate the molecular mechanisms
involved in the anticancer effect of the polyphenolic compounds present in PP in different
models of cervical cancer.

2. Methodology

To prepare this review, we conducted an electronic literature search using two databases:
PubMed and Scopus. The search was performed using the following keywords: “Pomegranate
peel,” “Phytochemical extraction,” “Polyphenol,” “Cervical cancer,” “Antioxidant,” and
“Nanoparticles”. These keywords were used individually or in the following combina-
tions: “Pomegranate peel + Polyphenol,” “Phytochemical extraction + Pomegranate peel,”
“Pomegranate peel + Polyphenol + Cervical cancer,” and “Nanoparticles + Cervical cancer”.
We included cell culture studies reporting the effects of pomegranate peel extract or its
bioactive polyphenols. We excluded studies that were (1) only available in abstract form;
(2) not written in English; and (3) books, meta-analyses, letters to the editor, and com-
mentaries. We retrieved 427 articles, of which 92 were duplicates and were removed, and
225 articles were excluded for reasons 1, 2 and 3. Finally, 110 articles met the inclusion
criteria and were included in this review.

3. Pomegranate Polyphenols

Pomegranate consists of light to dark red arils with little white seeds and a bright, deep
red peel with an inner white tissue [15] (Figure 1). The inner part of the pomegranate fruit
can be consumed as fresh fruit and juice, and both are widely consumed worldwide [16].
This fruit has been consumed since ancient times for its therapeutic and nutritional proper-
ties [17]. It possesses a high concentration of total polyphenols (83 mg/100 g of the edible
portion or 250 mg/100 mL), with similar levels as red wine (203 mg/100 mL) and higher
levels than green tea (103 mg/100 mL) [18]. The polyphenolic compounds present in this
fruit include punicalagin, ellagic acid, punicalin, catechin, chlorogenic acid, gallic acid,
epicatechin, caffeic acid, ferulic acid, delphinidin, and rutin [19–21].

Figure 1. Anatomy of pomegranate fruit.

The pomegranate peel has a significant amount of protein, polysaccharides, miner-
als (calcium, phosphorus, magnesium, potassium, sodium), and phenolic compounds
such as flavonoids (catechin, epicatechin, quercetin, rutin, kaempferol, hesperidine, antho-
cyanins, procyanidins), hydrolyzable tannins (pedunculagin, punicalin, punicalagin), and
phenolic acids (gallic, ellagic, vanillic, caffeic, ferulic, cinnamic, p-coumaric acids), among
others [22–24]. (Figure 2).
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Figure 2. Chemical structures of polyphenols present in pomegranate peel.

4. Extraction and Characterization of Phytochemicals in Pomegranate Peel

For the correct standardization during the preparation of PPE, it is necessary to at-
tend to different factors, including the solvent, pomegranate variety, extraction method,
and use of green technologies [25]. The solvent choice has a significant influence on the
concentration of polyphenols in PPE, as demonstrated by Al-Zoreky et al., who used
extracts obtained with diethyl ether, 80% methanol (water-methanol), and distilled wa-
ter to analyze the possible antimicrobial effect against various bacterial strains, finding
that 80% methanolic extract had a much higher polyphenol content and exerted more
potent antimicrobial activity [26]. Similarly, Tayel et al. tested different solvents, such
as acetone, ethanol, methanol, ethyl acetate, and water, for the preparation and use of
PPE as a possible antifungal agent, observing that methanolic extract had the best results,
followed by ethanolic and aqueous extracts [27]. On the other hand, Venkataramanamma
et al. standardized the extraction of PPE using a combination of water and ethanol, which
are non-toxic food-grade solvents. The authors recommended this type of extraction at
room temperature for 24–48 h at a 1:1 (v/v) concentration, considering it an efficient and
eco-friendly option by minimizing the use of solvents and energy [28]. The variety and
region of origin of the pomegranate fruit also influence the concentration and phenolic
profile of PPE. When comparing the amount of ellagic acid obtained from the PPE of
pomegranates from different regions, it was found that crops from Spain had 16.5 mg/g,
Italy had 8.4 mg/g, and Egypt had 12.56 mg/g [29–31]. Ambigaipalan et al. identified
numerous phenolic compounds in PPE from California crops using HPLC-DAD-ESI-MS.
The compounds included hydrolyzable tannins (ellagic acid, ellagic derivatives, punicala-
gin isomers), phenolic acids (protocatechuic acid, vanillic acid, citric acid), anthocyanins
(cyanidin-3-O-pentoside, delphinidin-3-O-glucoside, pelargonidin- 3-O-glucoside), and
flavonoids (catechin, epicatechin, gallocatechin, quercetin, etc.) [32]. Meanwhile, using
RP/HPLC/ESI/MS, Gonzalez-Castillo et al. found hydrolyzable (532.98 mg g−1) and
condensed tannins (471.81 mg g−1), identifying punicalin, punicalagin, ellagic acid, and
gallic acid as the main compounds of the PPE from Mexican pomegranate fruit [33].

There are different methods and analytical techniques for the extraction and identi-
fication of polyphenols from PP. Rajha et al. extracted polyphenols from PP using three
different techniques: solid-liquid (SL), ultrasound (USE), and infrared extraction (IR). For
all the techniques, deep eutectic solvents were used as eco-friendly alternatives to tradi-
tional solvents. High-performance liquid chromatography (HPLC) was used to identify
and quantify the compounds, finding that the highest concentration was obtained using the
IR technique [34]. In another study, Kaderides et al. compared the efficiency of microwave-
assisted and ultrasound-assisted extraction of PP, finding that the microwave method
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was 1.7 times more efficient and only needed half the time compared to the ultrasound
method. In addition, a high amount of ellagitannins was found, especially punicalagin
(143.64 mg/g dry matter) [35]. García et al. used pressurized liquid extraction (PLE) with
ethanol and water as an environmentally friendly alternative for the extraction of polyphe-
nols from pomegranate peel, finding that this technique was effective for the extraction of
total polyphenols but not for punicalagin recovery [36]. Other efficient green technologies
for the extraction of polyphenols include enzyme-assisted solvent extraction (EASE) and
enzyme-assisted supercritical fluid extraction (EASCFE). Mushtaq et al. analyzed both
methods for the extraction of pomegranate peel, finding that EASCFE recovered twice as
many polyphenols as EASE and increased their radical scavenging capacity. The authors
used HPLC-DAD-ESI-MS to characterize the extracts, finding vanillic (108.36 µg/g), ferulic
(75.19 µg/g), and syringic (88.24 µg/g) acids [37] (Table 1).

Table 1. Extraction technologies and analytical techniques used to obtain and characterize polyphenol
compounds from pomegranate peel.

Technology Extraction
Conditions Identification Method Outcome Ref.

SL

Diethyl ether; 80% methanol;
water

1 h
Room temperature

Not indicated
DE: 6.2 mg GAE/g

MW: 262.5 mg GAE/g
W: 82.5 mg GAE/g

[26]

SL
Water/ethanol 1:1
Room temperature

24–48 h
RP-HPLC Identification of punicalagin A

and B, ellagic acid [28]

USE Acetone (70%)
20 min at 30 ◦C HPLC-DAD-ESI-MS Identification of seventy-nine

phenolic compounds [32]

SL Water
60 ◦C for 30 min

RP/HPLC/ESI/
MS

Hydrolyzable tannins: 532.98 mg
g−1

Condensed tannins: 471.81 mg g−1
[33]

SL
USE
IR

Deep eutectic solvents
50 ◦C for 90 min HPLC

SL: 13 mg/g DM
US: 114 mg/g DM
IR: 152 mg/g DM

[34]

MAE
USE

MAE: 50% aqueous ethanol
LSR: 60:1 mL/g
600 W for 4 min

UAE: water
LSR: 32.2:1 mL/g

Amplitude level: 39.8%
Pulse: 1.2/1 at 34.7 ◦C for 10 min

HPLC-UV–vis
Punicalagin

MAE: 143.64 mg/g DM
USE: 138.8 mg/g DM

[35]

PLE

Ethanol (77%)
200 ◦C

Pressure 1500 psi
for 20 min

HPLC-DAD-ESI-
TOF/MS

TPC: 164.3 ± 10.7 mg GAE/g DM
Punicalagin:

17 ± 3.6 mg/g DM
[36]

EASEEASCFE

CK: cellulase, pectinase, and
protease; (50:25:25)

at 3.8%, 49 ◦C
pH 6.7 for 85 min

HPLC-DAD-ESI–MS

TPC: 301.53 mg GAE/g
Identification of gallic, caffeic,
p-coumaric, ferulic, syringic,

sinapic, and vanillic acids

[37]

Abbreviations: SL: solid-liquid extraction, USE: ultrasound-assisted extraction, IR: infrared extraction, MAE:
microwave-assisted extraction, PLE: pressurized liquid extraction, EASE: enzyme-assisted solvent extraction,
EASCFE: enzyme-assisted supercritical fluid extraction, CK: cocktail enzyme, DM: diethyl ether, MW: wa-
ter/methanol, W: water, TPC: total polyphenol content, GAE: mg of gallic acid equivalent, DM: dry matter.

The use of polar solvents is effective in the recovery of polyphenolic compounds
from plants [38]. Organic solvents such as diethyl ether [26], methanol [26,27], ethanol
[27,28,36], acetone [27], and water [26–28] are suitable for the extraction of polyphenols
from pomegranate peel. Aqueous acetone allows the extraction of high molecular weight
flavonoids [27], while aqueous methanol recovers a greater quantity of total polyphenolic
compounds [26,27]. The choice of extraction method (time, temperature, solvent ratio,
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and number of repeat extractions) depends on the chemical nature of the compounds
to be recovered [38,39] and on the provenance of the pomegranate from which the peel
is obtained [29–33].

5. Pomegranate Peel Extract for Cervical Cancer Treatment

Cervical cancer is a global burden, being the fourth most common cancer in women
and responsible for 7.5% of female cancer-related deaths [40]. The primary cause of the
development of cervical cancer is infection by human papillomavirus (HPV). There are
200 types of HPV; however, only 12 are related to carcinogenesis, with HPV-16 and HPV-18
being responsible for more than 60% of cases [41]. The integration of high-risk HPV DNA
into the cellular genome leads to the expression of the e6 and e7 oncogenes, which interact
with tumor suppressor factors and cell cycle regulators such as p53 and pRb, leading to
deregulation and cell immortalization [42].

Currently, there are different procedures for the prevention and treatment of cervical
cancer; the main ones are vaccination, radiotherapy, chemotherapy, and surgery. However,
even with these treatments, patients in advanced stages have poor prognoses [43]. In
chemotherapy, the most commonly used drugs are cisplatin, fluorouracil, and paclitaxel;
however, they can produce severe side effects and drug resistance, causing tumor recur-
rence [44]. For this reason, the use of polyphenolic compounds has drawn attention as
a viable alternative in the treatment of this pathology [45]. The pomegranate fruit and
extracts obtained from its different parts possess high levels of polyphenol compounds
that confer potent biological activities [46,47]. In recent years, pomegranate peel extract has
stood out for its medicinal properties and biological activities. Fazio et al. analyzed the
effect of acetone and methanolic PPE on the HeLa cervical cancer cell line. The cells were
exposed to eight different concentrations (5, 15, 30, 60, 120, 240, 480, and 960 µg mL−1)
of both extracts for a period of 72 h. Their results showed that both extracts had potent
antiproliferative effects and marked scavenging activities in a dose-dependent manner.
Furthermore, the methanolic extract activated caspases 3, 7, and 9, inducing DNA damage
and triggering apoptosis. The total polyphenolic content of both extracts was measured,
finding that the acetone extract contained 186± 8.7 mg GAE per g DW while the methanolic
extract had 178.7 ± 2.5 mg GAE per g DW. Both extracts had similar phenolic content. The
main compounds were punicalagin, pedunculagin, ellagic acid, gallic acid, and caffeic
acid, among others. The authors determined that the polyphenols present in PPE were
responsible for the antioxidant and anticancer activities in this cancer cell line [48].

Next, we will discuss the anticancer effect of the principal polyphenols present in
PPE in cervical cancer models, individually or in combination with other compounds or
drugs (Table 2).

6. Anticancer Effect of Pomegranate Peel Polyphenols on Cervical Cancer Models

Punicalagin (PCN), a hydrolyzable tannin present in pomegranate peel, provides
numerous beneficial properties and is associated with anticancer activity in in vitro models
because it intervenes in the cell cycle, proliferation/survival signals, and catabolic processes
such as apoptosis and autophagy [49]. Zhang et al. observed that treatment with PCN
at concentrations of 10 to 100 µM reduced the viability of the cervical cancer cell line
ME-180 by up to 80%. The authors observed an increase in ROS generation and alterations
in mitochondrial membrane potential, causing a cytotoxic effect on these cancer cells.
Moreover, this treatment downregulated the expression of NF-kB protein and upregulated
the expression of caspase-3 and -9, Bax, and p53 mRNA, thus stimulating apoptosis, which
was corroborated by changes in the morphology of the cell’s nucleus [50]. Comparably,
Tang et al. found that the viability of HeLa cells was affected when different concentrations
of PCN were administered (12.5, 25, 50, 100, and 200 µM for 24, 36, and 48 h) in a time-
and dose-dependent manner. This decrease in proliferation was due to the induction
of cell cycle arrest in the G1 phase, caused by the downregulation of β-catenin and its
downstream proteins cyclin D1 and c-myc, which are responsible for the transition from the
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G1 phase to the S phase. Additionally, treatment with PCN led to cell death by modulating
the expression of apoptosis-associated proteins, downregulating the expression of anti-
apoptotic Bcl-2, and upregulating the expression of pro-apoptotic Bax. Moreover, PCN
stopped the progression of cell migration; this was demonstrated using the wound-healing
assay, where treated cells did not recover in the same way as control cells. They also had
higher expression of MMP-9 and MMP-2 proteins, which interfered with their invasive
capacity [51]. A similar antiproliferative effect was observed by Xie et al. in SiHa and HeLa
cells when different amounts of PCN were administered. The concentrations that showed
the most significant antiproliferative effect were 40–67 µM, while higher concentrations
(90–140 µM) caused total cell death. The results suggested that apoptosis induced by
PCN treatment was due to the expression of caspases since casp3, casp7, and casp9 were
upregulated. In addition, downregulation of e6 and e7 was observed, with an effect on their
target STAT3 proteins and the Rb retinoblastoma protein [52].

STAT3 mediates the expression of genes involved in cellular proliferation and apop-
tosis processes. Mutations and structural changes have been detected in this protein in
cancer cell lines [53]. Punicalagin has demonstrated a potent anticancer effect on differ-
ent cervical cancer cell lines through multiple signaling pathways involved in cell death,
including the downregulated expression of NF-kB protein [49,50]. NF-kB is a group of
transcription factors that participate in processes of inflammation, viral replication, and
the initiation and progression of cancer. Activation of nuclear factor kB, triggered by HPV
infection, can inhibit cell death by stimulating the transcription of anti-apoptotic genes.
NF-kB also upregulates the transcription of genes involved in proliferation, metastasis, and
angiogenesis. We can determine that NF-kB works as part of a network. The cervical cancer
microenvironment includes the expression of numerous genes and is related to multiple
factors, including the response to polyphenols [54].

Another hydrolyzable tannin found mainly in pomegranate peel is punicalin (PUN),
which demonstrates various therapeutic properties, including antioxidant, anti-inflammatory,
hepatoprotective, antiviral, antibacterial, and anticancer activities [55]. Gonzalez-Castillo
et al. observed that treatment with PUN in conjunction with ellagic acid (EA) (extracted
and purified from pomegranate peel) had a dose-dependent cytotoxic and antiprolifer-
ative effect on HeLa cells. Furthermore, these authors observed that these polyphenols
modulated the expression of apoptosis-associated proteins by inhibiting the activity of
Bcl-2 and activating caspase 3. The authors also pointed out that these polyphenols in-
hibited the Akt/mTOR pathway by regulating the proteins involved in its activation [33].
In cervical cancer, PI3k/Akt/mTOR is generally dysregulated and, despite its role and
regulatory mechanism not being completely elucidated, has the potential to be a biomarker
for early diagnosis and possible therapeutic target for the treatment of this pathology
[56,57]. Currently, evidence shows a synergistic effect in the combination of some polyphe-
nolic compounds, presenting higher anticancer activity than when used individually.
Some compounds only exhibit certain biological activities when they are combined with
other polyphenols [58].

Gallic acid (GA) is a polyphenol found in the peel and arils of pomegranate. This com-
pound has potent antioxidant, anti-inflammatory, antimutagenic, and anticancer activities
and, in specific concentrations, can act as a pro-oxidant, causing apoptosis in various cancer
cell lines [59–62]. Zhao & Hu detected the effects of GA on SiHa and HeLa cervical cell lines,
reporting that cell viability was reduced in a dose-dependent manner using concentrations
of 0, 10, 15, 20, 25, 30, and 40 µg/mL. The authors also analyzed the antiproliferative effect
of this polyphenol using the BrdU assay, finding a significantly decreased percentage in
both cell lines. In the HeLa cell line, proliferation was reduced 27% compared to the control
group, to give 3.7%, and in the SiHa cell line, proliferation was reduced 29% compared
to the control group, to give 3.3%. Additionally, GA reduced migration and invasion in
both cell lines, demonstrated by the wound-scratch assay, inhibiting closure of the gap
at concentrations of 10, 15, and 20 µg/mL. Further, these authors observed a decrease
in the expression of ADAM 17, EGFR, and phosphorylated Akt (p-Akt) proteins, which
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are involved in cell motility and invasion, through different molecular mechanisms [63].
Park et al. analyzed redox state changes in GA-treated HeLa cells that inhibited growth
and led to cell death. The authors observed a decrease in cell growth at 24 h of treatment,
with an IC50 of 80 µM, and complete inhibition at a concentration of >100 µM by 72 h.
Furthermore, GA was found to increase ROS levels in a time- and dose-dependent manner
(50–400 µM, from a time phase of 30 min to 24 h), accompanied by the loss of mitochondrial
membrane potential. Additionally, cellular levels of the antioxidant enzyme glutathione
peroxidase (GSH) decreased when treatment was administered above 100 µM at 24 and
72 h [64]. Similarly, You et al. found that 80 µM GA reduced cell viability by 50% after
72 h of treatment. In addition, an increase in ROS was observed, accompanied by the loss
of mitochondrial membrane potential. Finally, treatment with GA led to cell death [65].
Both scientific groups [64,65] noted an increase in ROS levels and loss of mitochondrial
membrane potential. In healthy cells, polyphenols regularly interact with ROS to prevent
cell viability from being affected [66]. However, some polyphenolic compounds can se-
lectively target cancer cells and increase ROS levels, causing apoptosis and autophagy.
Additionally, they can alter mitochondrial functions, such as oxidative phosphorylation,
signaling pathways, and mitochondrial enzymes [67].

Another polyphenol compound found in PP is ellagic acid (EA) [68]. Li et al. observed
that treatment with EA significantly decreased the viability of HeLa, SiHa, and C33A
cervical cancer cell lines in a time- and dose-dependent manner (10, 20, and 30 µM; 24, 48,
and 72 h). Additionally, EA had a dose-dependent apoptotic effect on HeLa cells caused by
cell cycle arrest in the G1 phase via the regulation of STAT3 signaling and modulation of the
expression of associated proteins (cyclins) [69]. Similar results were obtained by Narayanan
et al. when the CaSki cell line was subjected to EA treatment for 48 h, in which cell cycle
arrest occurred in the G1 phase; however, the authors attributed these results to an increase
in the expression of both p21 mRNA and protein [70]. Gou et al. observed a decrease in
the invasion capacity of HeLa cells when treated with different concentrations of EA (2.5,
5.0, and 10.0 µM), which was due to an increase in igfb7 (insulin-like growth factor-binding
protein 7) gene expression causing the inhibition of the Akt/mTOR signaling pathway [71].
This pathway plays a role in cell growth, proliferation, differentiation, metabolism, and
apoptosis; alterations in this pathway are involved in many pathologies, including cancer
and tumor development. Kumar et al. analyzed the combination of EA with other phenolic
compounds and found a synergistic effect with potential therapeutic utility. The authors
detected an increase in the production of ROS and DNA damage, which led to cell death.
Other effects produced by this combination were the restored activity of p53 and p21 genes
and increased expression of the Bax proapoptotic protein. In addition, mRNA expression
of the E6 oncoprotein of HPV significantly decreased in cervical cancer cells when different
concentrations of a mixture of both polyphenols were administered, suggesting antiviral
activity [72]. Polyphenols have proven to be active compounds against different viral
infections through mechanisms involved in the growth cycle of viruses. These antiviral
action mechanisms depend on the type of virus and whether a single polyphenol or
polyphenolic extract is used. Several studies have indicated that this antiviral activity
is due to inhibition of viral replication in the early stages of infection. More research is
needed exploring the effect of polyphenolic compounds, individually or in groups, and
their interaction with different viruses [70].

Caffeic acid (CA) is a phenolic compound found in pomegranate fruit, mainly in
the peel and juice [73]. Different studies have reported its antioxidant, anti-inflammatory,
antihypertensive, antidiabetic, and anticancer properties [74]. The antitumor activity of
CA has been subject to in vitro and in vivo studies, demonstrating different molecular
pathways through which this compound could be used as a treatment in different types
of cancer, including cervical cancer [75]. Hsu et al. treated five cervical cancer cell lines
with 50 µM CA, including HeLa, Siha, ME180, Caski, and pre-cancerous line Z172. These
authors observed an increase in the expression of the E2F-1 transcription factor, which has
an essential role in regulating the cell cycle, serving as a checkpoint, and inducing cell arrest
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in the S and G2/M phases [76]. In HeLa cell lines, treatment with CA (1–10 µM) for 24 to
48 h had a modulating effect on the expression of caspase-3; it also increased the expression
of p53 and inhibited the activity of Bcl-2, which suppressed growth and induced cell death
via the mitochondrial apoptotic pathway [77]. Ye et al. analyzed the antiproliferative and
apoptotic effect of CA in conjunction with the antidiabetic drug metformin. A mixture
of 100 µM CA with 10 mM metformin administered to the HTB-34 cell line, which has
aggressive metastatic activity, caused an increase in intracellular oxidative stress that made
the cell more susceptible to the metformin effect [78]. Metformin, a drug used in diabetes
control, is also used to regulate epithelial-mesenchymal transition (EMT), transforming
epithelial cells and conferring greater plasticity and ability to migrate. Metformin and CA
treatment showed antimetastatic activity when administered individually in C-41 and SiHa
lines; however, this activity was higher when administered together [79–81].

Chlorogenic acid (CLA) is a natural compound found in some plants and fruits, such as
pomegranate. This polyphenol has several pharmacological effects, including antibacterial,
antiviral, antioxidant, anti-inflammatory, and antimutagenic activities, and is listed by
the China Food and Drug Administration (CFDA) as a potential anticancer drug [82–84].
Hemaiswarya & Doble analyzed CLA combined with other polyphenols, such as ferulic,
caffeic, and p-coumaric acids, the phenolic derivative eugenol, and the antineoplastic drug
5-fluorouracil in HeLa cells. These authors observed that the apoptotic effect was more
significant when the compounds were used together compared to when they were used
individually, causing cell cycle arrest in the S and G2/M phases. Their findings indicated
that the synergic effect was the result of the compounds having different target molecules
involved in the cell cycle [85]. Similar results were obtained by Catanzaro et al. when they
evaluated the activity of CLA combined with the anticancer drugs cisplatin and oxaliplatin
in A431 and A431Pt cell lines. The results suggested that CLA bound to the anticancer
drugs to form compounds with more significant activity against cancer cells. Therefore, as
the authors suggested, CLA may help to combat drug resistance. However, more detailed
studies are needed to determine possible interactions between different polyphenols and
anticancer drugs [86].

Delphinidin (DPN) is an anthocyanidin found in the peel, arils, and juice of pomegranate
[87]. Its anticancer activity has been observed in liver, breast, ovarian, lung, and cervical
cancer cell lines [88–91]. Lazzé et al. analyzed the effect of DPN on cell proliferation,
morphology, and induction of apoptosis in HeLa S3 cells. These authors observed that
treatment with DPN at concentrations of 150 and 200 µM decreased cell viability to 59%
and 50%, respectively. Moreover, the 24 h treatment showed a dose-dependent apoptotic
effect, causing changes in morphology related to the cell death process, such as chromatin
condensation and depletion of the nucleus. Finally, the mitochondrial membrane poten-
tial was analyzed, finding a 23.2% decrease in the number of treated cells compared to
the control cells [92]. Tsuyuki et al. demonstrated that treatment with anthocyanidins,
especially DPN, at concentrations of 25, 50, and 100 µM caused cytotoxicity and cell cycle
abnormalities in HeLa and HeLa S3 cells. Additionally, DPN downregulated the expression
of c-Jun (part of transcription factor AP-1) and induced the formation of autolysosomes and
autophagosomes, leading to apoptosis [93]. AP-1 is a transcription factor that participates
in cellular differentiation, proliferation, and apoptosis. The activity of this transcription
factor can be induced by cytokines, viral infections, and physical/chemical stresses. In
carcinogenesis, AP-1 has a crucial role in oncogenic transformation, and c-Jun protein
positively regulates cell proliferation [94]. Therefore, as observed by Tsuyuki et al. [94],
the inhibition of c-Jun expression in cervical cancer cells in parallel with the decrease in
proliferation and cell cycle progression indicate that DPN may be a promising alternative
for the treatment of this pathology.

Rutin (RU) is a polyphenol detected in the extract of pomegranate peel [95]. This
compound has shown antioxidant, anti-inflammatory, antiangiogenic, proapoptotic, and
antiproliferative activities, which could contribute to the treatment of different pathologies,
such as cancer [96]. Khan et al. observed RU to possess a concentration-dependent
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(60–180 µM) pro-apoptotic effect on the Caski cell line. These authors demonstrated that
RU modulated the expression of genes encoding the transcription factor Hes-1 and the
transmembrane receptor Notch-1, the overexpression of which has been associated with
cervical cancer progression. The results also showed an increase in ROS, alterations in
Bax/Bcl-2 mRNA expression, decreased expression of CDK4 and cyclin D1, and an arrest
of cell cycle progression in the G0/G1 phases [97]. Pandey et al. demonstrated that 24 h
treatment of HeLa cells with RU significantly decreased cell viability in a dose-dependent
manner (concentrations of 40, 80, 120, 160, and 200 µM), arrested the cell cycle at the G0/G1
phase, and reduced the expression of CDK4 and cyclinD1 mRNA. Moreover, these authors
detected signals that indicated cell death, such as decreased mitochondrial membrane
potential, induction of caspase-3, -8, and -9 activities, and the presence of apoptotic bodies.
Additionally, RU treatment increased the expression of p53 and pRb tumor suppressors and
the bax gene and decreased the expression of E6 and E7 oncoproteins and the bcl-2 gene [98].
Similar results were obtained by Pandey et al. in SiHa cells treated with RU (40–200 µM)
for 24 h, in which cell death was induced in a dose-dependent manner. This apoptotic effect
was associated with the upregulation of bax and caspases 3 and 9 and the downregulation
of bcl-2 expression. Moreover, the authors demonstrated that RU downregulated the
expression of the jab1 oncogene, which plays a role in cancer progression by inactivating
p53 and p27 tumor suppressors, leading to cell cycle arrest [99].

Table 2. Modulatory polyphenol impact on signaling pathways in cervical cancer cell lines.

Polyphenol Concentration/
Time

Experimental
Model

↑
Upregulation

↓
Downregulation

Final
Effect Reference

Punicalagin 10–200 µM
24 to 48 h

ME-180
HeLa
SiHa

Bax
Casp-3, 7, 9

STAT3
pRb

NF-KB
Bcl-2

Cyclin D1
c-myc

E6 and E7

Inhibition of cell proliferation and
induction of apoptosis

Cell cycle arrest
[50–52]

Punicalin
100, 500, and

1000 ppm
24, 48, and 72 h

HeLa Casp-3 Bcl-2 Suppression of cell viability
Induction of apoptosis [33]

Gallic acid 10–400 µg/mL
30 min to 72 h

HTB-35
HeLa ROS

ADAM17
EGFR
p-Akt
GSH

Cell cycle arrest
Induction of apoptosis/ necrosis

Inhibition of cell migration
[63–65]

Ellagic acid 2.5–30 µM
24, 48, and 72 h

HeLa
SiHa
C33A

STAT3
IGFB7
ROS
P53
P21
Bax

Cyclin
E6

Inhibition of cell proliferation and
induction of apoptosis

Cell cycle arrest at G1 phase
Suppression of Akt/mTOR pathway

Induce DNA damage

[69–72]

Caffeic acid 1–100 µM
24 to 48 h

HeLa
SiHa

ME180
Caski
Z172

E2F-1
Casp-3

p53 Bcl-2 Cell cycle arrest at S and G2/M phases [76–78]

Chlorogenic
acid

IC50 ~ 10(-4) M
24 h

A431
A431Pt ___ ___ Binds with cisplatin and oxaliplatin to

oppose drug resistance [85,86]

Delphinidin 25–200 µM
24 h

HeLa
HeLa S3 ___ c-Jun

Induces autophagosome formation
Inhibition of cell proliferation and

induction of apoptosis
[93,94]

Rutin 40–200 µM
24 h

Caski
SiHA

ROS
Bax
p53
pRb

Casp-2, 8 and 9
p27

Hes-1
Notch-1

Bcl-2
CDK4

Cyclin D1
E6 and E7

Jab1

Cell cycle arrest at G0/G1 phase
Suppression of cell viability

Induction of apoptosis
[97–99]

Abbreviations: Bax (Bcl-2-associated X protein); Casp (caspase); E2F-1 (E2F Transcription Factor 1); IGFBP7
(Insulin Like Growth Factor Binding Protein 7); ROS (Reactive Oxygen Species); STAT3 (Signal transducer and
activator of transcription 3); ADAM17 (ADAM Metallopeptidase Domain 17); Atgs (autophagy-related protein);
Beclin-1 (B-cell lymphoma 2); c-myc (Myc proto-oncogene); CDK4 (Cyclin-dependent kinase 4); c-Jun (Jun Proto-
Oncogene); EGFR (Epidermal growth factor receptor); Hes-1 (hairy and enhancer of split-1); Jab-1 (Jun activation
domain-binding protein 1); Mcl-2 (Induced myeloid leukemia cell differentiation protein); NF-KB (nuclear factor
kappa-light-chain-enhancer of activated B cells); p-Akt (phosphorylated Akt); PI3K (Phosphoinositide 3-kinases);
GSH (glutathione).
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7. Bioavailability Limitations and the Use of Nanotechnology

Notwithstanding the evidence provided by numerous studies that have demonstrated
the effect of polyphenols in cancer treatment, the issue that remains unresolved is the
bioavailability of these compounds in vivo. This is because polyphenols have to interact
with the food matrix, gut microbiota, and metabolic processes involved with digestion
and absorption. For this reason, nanotechnology has been suggested to protect them from
degradation and enable higher concentrations to reach target cells [100].

Nanotechnology has gained importance in recent years in cancer treatment and di-
agnosis. In the treatment with polyphenols, nanoparticles act as vehicles that allow the
chemical compounds to be transported more efficiently by crossing biological barriers more
easily, thus increasing their efficacy and reducing side effects. Different nanomaterials
are used as transport systems through the body, such as micelles, liposomes, dendrimers,
nanoemulsions, etc. These materials enable compounds to reach target tumor cells with a
high level of specificity, thereby reducing collateral damage to healthy cells [101,102].

Currently, nanostructures with different sizes, shapes, and materials, such as proteins,
polysaccharides, lipids, synthetic polymers, and inorganic materials, have been devel-
oped. However, nanoparticles with structures made from natural materials have better
biological and physicochemical properties than those made from synthetic materials. Nat-
ural nanoparticles have higher biocompatibility, are biodegradable, and do not generate
immune responses [103,104].

PPE has been used in the synthesis of gold, silver, copper, iron, and zinc oxide nanopar-
ticles, among others, since they can act as reducing agents and stabilizers and are eco-
friendly alternatives to toxic chemicals that pollute the environment. These functional PP
nanoparticles can help in the development of more efficient therapeutics, as they are less
cytotoxic, more effective, and have better bioavailability [105–109]. Khan et al. synthesized
silver nanoparticles using PP extract and analyzed their effect on cancer cell lines. The
authors observed a dose-dependent decrease in cell viability, the accumulation of ROS,
morphological changes, and DNA fragmentation, suggesting anticancer potential [110].
Studies using functional nanoparticles with PP polyphenols in cervical cancer models
are needed.

8. Future Prospects and Conclusions

According to the information obtained in the present study, pomegranate peel polyphe-
nols seem to be a viable alternative for the prevention and treatment of cervical cancer.
Recent studies have demonstrated that PP polyphenols, independently or in combination
with other compounds or drugs, possess antiproliferative activities in cervical cancer mod-
els through the induction of apoptosis, cell cycle arrest, inhibition of DNA synthesis, and
modulation of different signaling pathways. To improve bioavailability in more complex
models, various research results reported in this paper suggest multiple alternatives, such
as using two or more polyphenols together to achieve a synergistic effect, the encapsula-
tion of polyphenolic extracts, and the use of nanotechnology. Functional nanoparticles
possess strong anticancer activity, low toxicity, increased accumulation within the tumor,
and faster kidney clearance. Being able to modify the surface of these nanoparticles and
adding polyphenolic compounds makes them the perfect candidate for cancer treatment.
In cervical cancer, the use of nanoparticles through the vaginal route would allow drug
administration directly to the cervix, improving its action and reducing patient side effects.
Therefore, the development of functional nanoparticles with biocompatible materials is
expected in the near future, along with the combination of different polyphenols to re-
place current drugs in the treatment of cancer. Thus, the technology behind functional
nanoparticles needs further study in order to be used safely in humans.
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