
 

Int. J. Mol. Sci. 2015, 16, 24219-24242; doi:10.3390/ijms161024219 
 

International Journal of  

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Inhibitory Effect of Dried Pomegranate Concentration Powder 
on Melanogenesis in B16F10 Melanoma Cells; Involvement of 
p38 and PKA Signaling Pathways 

Su Jin Kang 1,2,†, Beom Rak Choi 3,†, Eun Kyoung Lee 1,2, Seung Hee Kim 3, Hae Yeon Yi 3,  

Hye Rim Park 3, Chang Hyun Song 1,4, Young Joon Lee 1,2,* and Sae Kwang Ku 1,4,* 

1 The Medical Research Center for Globalization of Herbal Medicine, Daegu Haany University, 

Gyeongsan 712-715, Korea; E-Mails: vegonia1@hanmail.net (S.J.K.);  

kkong0305@hanmail.net (E.K.L.); dvmsong@hotmail.com (C.H.S.) 
2 Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, 

Gyeongsan 712-715, Korea 
3 Research Institute, Health-Love Co., Ltd., Anyang 431-060, Korea;  

E-Mails: brchoi@health-love.com (B.R.C.); key7413@health-love.com (S.H.K.); 

Leehaeyun@health-love.com (H.Y.Y.); hrpark@health-love.com (H.R.P.) 
4 Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 

Gyeongsan 712-715, Korea 

† These authors contributed equally to this work. 

* Authors to whom correspondence should be addressed;  

E-Mails: gksxntk@dhu.ac.kr (Y.J.L.); gucci200@hanmail.net (S.K.K.);  

Tel.: +82-53-819-1296 (Y.J.L.); +82-53-819-1549 (S.K.K.);  

Fax: +82-53-819-1576 (Y.J.L. & S.K.K.). 

Academic Editor: Sanjay K. Srivastava 

Received: 24 June 2015 / Accepted: 8 October 2015 / Published: 13 October 2015 

 

Abstract: Plants rich in antioxidant substances may be useful for preventing skin aging. 

Pomegranates, containing flavonoids and other polyphenolic compounds, are widely 

consumed due to their beneficial properties. We examined the underlying mechanisms of 

dried pomegranate concentrate powder (PCP) on melanin synthesis in B16F10 melanoma 

cells. The antioxidant effects of PCP were determined by measuring free radical scavenging 

capacity and transcript levels of antioxidant enzymes. To explore the inhibitory effects of PCP 

on melanin synthesis, we measured tyrosinase activity and melanin content in α-melanocyte 
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stimulating hormone (α-MSH)-stimulated B16F10 cells. In addition, the levels of 

tyrosinase-related protein-1 (TRP-1), TRP-2, tyrosinase, and microphthalmia-associated 

transcription factor (MITF) expression were determined by Western blotting. Changes in 

the phosphorylation status of protein kinase A (PKA), cAMP response element-binding 

protein (CREB), mitogen-activated protein kinases (MAPKs), phosphatidylinositol  

3-kinase (PI3K), serine/threonine kinase Akt, and glycogen kinase 3β (GSK3β) were also 

examined. The free radical scavenging activity of PCP increased in a dose-dependent 

manner. In PCP-treated B16F10 cells, transcript levels of glutathione peroxidase-1 (GPx-1) 

were increased compared with α-MSH-stimulated cells. In addition, PCP led to the  

down-regulation of phospho-p38, phospho-PKA, phospho-CREB, phospho-GSK3β, MITF, 

and TRP-1 compared with α-MSH-stimulated B16F10 cells. We believe this effect may be 

associated with PCP activity, which leads to the inhibition of melanin production and 

tyrosinase activity. These results suggest that PCP decreases tyrosinase activity and 

melanin production via inactivation of the p38 and PKA signaling pathways, and 

subsequently decreases phosphorylation of CREB, MITF, and melanogenic enzymes. These 

observations provided new insights on the molecular mechanisms of the skin-whitening 

property of PCP. 

Keywords: pomegranate concentrate powder; whitening; anti-melanin; p38 

 

1. Introduction 

Melanin, a pigment produced by epidermal melanocytes, is the main determinant of skin color  

and contributes to protection against ultraviolet (UV) irradiation [1]. Melanogenesis is a complex 

process involving tyrosinase and tyrosinase-related proteins (TRPs). Tyrosinase plays an important 

role in regulating melanin formation, in which L-tyrosine is hydroxylated to L-dihydroxyphenylalanine 

(L-DOPA), and L-DOPA is oxidized into the corresponding o-quinone [2]. In addition, tyrosinase and 

TRPs are controlled by microphthalmia-associated transcription factor (MITF) in melanocytes. Moreover, 

it was recently reported that hyperpigmentation is prevented by the inhibition of melanogenesis [3–5]. 

Melanin synthesis is regulated by the transduction of several signals that play important functions in 

the process of melanogenesis. UV radiation and α-melanocyte stimulating hormone (α-MSH) activate 

adenyl cyclase to increase cAMP, which triggers the activation of cAMP-dependent protein kinase A 

(PKA) and several regulatory proteins [6]. Thereafter, PKA leads to the phosphorylation of cAMP 

response element binding protein (CREB), and the phosphorylation of CREB has been found to 

activate MITF transcription [6,7]. Mitogen-activated protein kinases (MAPKs), p38, extracellular 

response kinase (ERK), and c-Jun N-terminal (JNK) are important factors in melanogenesis. Recent 

studies have reported that p38 MAPK is involved in MITF regulation [8]. In addition, activation of the 

p38 MAPK signaling pathway increases the transcription of tyrosinase, which activates melanin 

synthesis [9,10]. 

In the process of melanogenesis, hydrogen peroxide (H2O2) and other reactive oxygen species 

(ROS) accumulate, leading to oxidative stress-induced damage of melanocytes [11]. ROS damage 
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cellular lipids, proteins and DNA. Furthermore, ROS can inhibit the formation of collagen, disrupt 

cellular renewal cycles and cause imbalances between ROS and antioxidant systems [12–14]. Thus, 

ROS scavengers and inhibitors of ROS production may suppress the melanogenesis pathway and 

protect against skin damage. 

Plant-derived natural antioxidants are a focus of skin aging prevention due to their potential to 

scavenge ROS and inhibit the UV-induced signal transduction pathway [15]. Therefore, antioxidant 

substances represent a promising strategy for reducing melanogenesis and skin aging. Pomegranates 

are rich in ellagic acid and polyphenols, which include flavonoids and hydrolyzable tannins [16–18]. 

Polyphenolics, contained in several plants, form the important part of the diet and exerts effective free 

radical scavenging and antioxidant activities. Studies have demonstrated that pomegranates exert strong 

anti-oxidant effects due to their free radical scavenging capacity and antioxidant properties [19,20]. 

Recently, it was demonstrated that the skin-whitening effects of pomegranates are due to the  

inhibition of melanocyte proliferation and melanin synthesis by tyrosinase in melanocytes [18,21,22]. 

However, the inhibitory effects of pomegranates on melanogenesis have not been fully examined. 

Pomegranate contains large amounts of ellagic acid and other organic materials, including  

flavonoids and polyphenols, more than either red wine and polyphenols [16,18,23]. These 

characteristics provide protection against heart disease and cancer [24–29]. In addition, pomegranate 

possesses anti-proliferative [30], anti-inflammatory [31], and anti-tumorigenic functions [32]. 

This study investigated the inhibitory effects of dried pomegranate concentrate powder (PCP) on 

melanogenesis in B16F10 melanoma cells and evaluated the potential antioxidant characteristics of 

PCP. In addition, the underlying mechanisms of the effects of PCP on melanin synthesis were explored 

in B16F10 melanoma cells by determining free radical scavenging capacity, tyrosinase activity, and 

melanin content. Moreover, the expression of TRP-1, TRP-2, and tyrosinase was examined, along with 

the MAPKs and PKA/CREB pathways. Finally, the PI3K/Akt signaling pathway was investigated in 

B16F10 cells. The murine B16F10 cell line was selected as a model of human melanoma since it 

produces melanin in response to activation by α-MSH [33,34]. 

2. Results 

2.1. Cytotoxicity of PCP in B16F10 Cells 

We first evaluated the cytotoxic effects of PCP on B16F10 cells using the MTT assay. PCP (0.75, 1, 

1.5, 2, 4, and 8 mg/mL) was added to B16F10 cells in the absence or presence of α-MSH. As shown in 

Figure 1, no significant differences were observed in the viability of B16F10 cells treated with PCP 

concentrations ranging from 0.5 to 2 mg/mL versus untreated control cells (Figure 1). Thus, we used 

PCP concentrations of 0.75, 1, and 1.5 mg/mL for subsequent experiments in B16F10 cells. 

2.2. Free Radical Scavenging Activity of PCP 

Significant increases in DPPH radical scavenging activities were detected in samples treated  

with vitamin A (1 mg/mL), vitamin C (1 mg/mL), and PCP at concentrations ranging from 0.25 to  

8 mg/mL. Vitamin A, vitamin C, and PCP significantly increased the radical scavenging activity in  

a concentration-dependent manner. Notably, PCP at concentrations 1 mg/mL or higher exhibited 
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scavenging activity similar to those of the positive controls (vitamin C- and vitamin E-treated samples) 

(Figure 2A–C). The ABTS assay was also performed to confirm the antioxidant property of PCP. 

Significant increases in ABTS radical scavenging activities were observed at PCP concentrations 

ranging from 0.25 to 8 mg/mL. Calculated IC50 values for DPPH and ABTS activity with PCP (0.25 to 

8 mg/mL) were 0.52 and 0.54 mg/mL, respectively. 

 

Figure 1. Cytotoxicity of pomegranate concentrate powder (PCP) in murine B16F10 

melanoma cells. B16F10 cells were treated with various concentrations of PCP (0.75, 1, 

1.5, 2, 4, and 8 mg/mL) in the absence or presence of α-MSH for 72 h. Values are 

expressed as the means ± SD from three independent experiments; PCP, pomegranate 

concentrate powder; α-MSH, α-melanocyte-stimulating hormone; and veh, vehicle control. 

Arrow indicates a significant (p < 0.001) decrease in cell viability compared with the 

control (veh) using the LSD test. 

 

Figure 2. Antioxidant characteristics of PCP. DPPH scavenging activity was examined at 

(A) PCP concentrations of 0.75, 1, 1.5, 2, 4, and 8 mg/mL; (B) vitamin C concentrations of 

0.01, 0.05, 0.1, 0.5, 1, 2, and 4 mg/mL; and (C) vitamin E concentrations of 0.01, 0.05, 0.1, 

0.5, 1, 2, and 4 mg/mL. Values are expressed as the means ± SD from three independent 

experiments. PCP, pomegranate concentrate powder; Vit C, vitamin C; Vit E, vitamin E; 

DPPH, 1-diphenyl-2-picrylhydrazyl radical; 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl; 

ABTS, 2,3-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid. a p < 0.05 or b p < 0.001 

compared with the control (veh) using the Mann-Whitney U-test. 
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2.3. Tyrosinase Activity of PCP 

To examine the tyrosinase effect, L-DOPA oxidation with mushroom-tyrosinases was determined at 

0.75, 1, 1.5, 2, 4, and 8 mg/mL PCP, respectively. At 4 and 8 mg/mL, PCP slightly reduced mushroom 

tyrosinase activity to 14.33% ± 1.39% and 23.98% ± 3.316%, respectively. Kojic acid significantly 

inhibited mushroom tyrosinase activity in a concentration-dependent manner (Figure 3). 

 

Figure 3. Inhibitory effects of PCP on melanogenesis. (A) The effect of PCP on mushroom 

tyrosinase activity was determined at concentrations of 0.75, 1, 1.5, 2, 4, and 8 mg/mL;  

(B) the effect of Kojic acid on mushroom tyrosinase activity was observed at concentrations 

of 25, 50, 100, 200, and 400 μM. Values are expressed as the means ± SD from three 

independent experiments. PCP, pomegranate concentrate powder. a p < 0.05 compared 

with the control (veh) using the LSD test. 

2.4. Intracellular Tyrosinase Activity of PCP in B16F10 Cells 

To clarify the tyrosinase inhibitory effect of PCP on melanogenesis, we determined the intracellular 

tyrosinase activity of PCP-treated B16F10 melanoma cells with or without α-MSH stimulation.  

As shown in Figure 4A, an approximately 2.2-fold increase in cellular tyrosinase activity was observed 

in α-MSH-stimulated cells compared with unstimulated cells. Tyrosinase activity of 0.75, 1 and  

1.5 mg/mL PCP-treated cells was reduced by 16.5%, 37.7%, and 48.6%, respectively, compared with 

α-MSH-stimulated cells (Figure 4A). Kojic acid at 50, 100, 200, and 400 μM also decreased intracellular 

tyrosinase activity by 27.8%, 48.1%, 57.1%, and 61.1%, respectively, compared with α-MSH-stimulated 

cells (Figure 4B). Arbutin at 0.5, 1, 2, 4 μM also decreased intracellular tyrosinase activity by 29.17%, 

50.44%, 59.83%, and 64.03%, respectively, compared with α-MSH-stimulated cells. Arbutin works by 

inhibiting the enzyme tyrosinase, a key enzyme in the synthesis of melanin. 

2.5. The Effects of PCP on Anti-Melanin Formation in B16F10 Cells 

To confirm the effect of PCP on melanin production, we performed a melanin content assay. 

Results are shown in Figure 5. Melanin content of α-MSH-stimulated cells increased approximately 

3.5-fold relative to vehicle-treated control cells. In contrast, 0.75, 1, 1.5, and 2 mg/mL PCP 

significantly decreased melanin production by 27.1%, 46.0%, 64.2%, and 66.8%, respectively, compared 
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with α-MSH-stimulated B16F10 cells. Arbutin at 0.5, 1, 2, and 4 mM also reduced melanin formation 

by 54.5%, 64.7%, 70.8%, and 89.6%, respectively, compared with α-MSH-stimulated cells (Figure 5). 

 

Figure 4. Effects of PCP on tyrosinase activity in B16F10 cells. (A) Tyrosinase activity 

was determined in B16F10 cells in the absence or presence of α-MSH (100 nM). B16F10 

cells were exposed to various concentrations of PCP (0.75, 1 or 1.5 mg/mL) for 72 h after 

treatment with or without α-MSH for 24 h; (B) Kojic acid (50, 100, 200, and 400 μM) was 

applied for 72 h following treatment with or without α-MSH for 24 h; (C) Arbutin (0.5, 1, 

2, and 4 mM) was applied for 72 h following treatment with or without α-MSH for 24 h. 

Values are expressed as the means ± SD from three independent experiments. PCP, 

pomegranate concentrate powder; α-MSH, α-melanocyte-stimulating hormone. a p < 0.05 

or b p < 0.01 compared with the control (veh) using the LSD test; c p < 0.05 or d p < 0.01 

compared with α-MSH treatment only using the LSD test. 

 

Figure 5. Cont. 
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Figure 5. Anti-melanin formation effect of PCP against α-MSH stimulation in B16F10 

cells. (A) Melanin production was determined in B16F10 cells in the absence or presence 

of α-MSH (100 nM). B16F10 cells were exposed to various concentrations of PCP (0.75, 1 

or 1.5 mg/mL) for 72 h following treatment with or without α-MSH for 24 h; (B) Arbutin 

(0.5, 1, 2, and 4 mM) was applied for 72 h following treatment with or without α-MSH for 

24 h. Values are expressed as the means ± SD from three independent experiments. PCP, 

pomegranate concentrate powder; α-MSH, α-melanocyte-stimulating hormone. a p < 0.05 

or b p < 0.01 compared with the control (veh) using the LSD test; c p < 0.05 or d p < 0.01 

compared with α-MSH treatment only using the LSD test; e p < 0.05 or f p < 0.05 

compared with the control (veh) using the Mann-Whitney U-test; g p < 0.01 or h p < 0.001 

compared with α-MSH treatment only using the Mann-Whitney U-test. 

2.6. The Effects of PCP on Tyrosinase, TRP-1, TRP-2, and MITF in B16F10 Cells 

Since inhibitors of hypopigmentation regulate melanin production via suppression of cellular 

tyrosinase activity, protein levels of tyrosinase, TRP-1, TRP-2, and MITF were examined in PCP-treated 

B16F10 cells with or without α-MSH. In the absence α-MSH, PCP treatment did not stimulate the 

expression levels of TRP-1, tyrosinase, and MITF and pigment synthesis (data not shown). α-MSH 

pretreatment increased the levels of TRP-1, tyrosinase, and MITF, while PCP with α-MSH pretreatment 

decreased the expression levels of TRP-1, tyrosinase, and MITF (Figure 6). 

2.7. The Effects of PCP on p-JNK, p-p38, p-ERK, p-PKA, p-CREB, and p-GSK3β Protein Levels 

Various signaling pathways regulate melanin pigment formation. Melanogenic gene expression is 

regulated primarily by MITF, as well as PKA, CERB, MAPKs, PI3K, AKT, and GSK3β. Since 

MAPKs play pivotal roles in the regulation of melanogenesis, we examined protein levels of p-PKA, 

p-CREB, p-JNK, p-p38, p-ERK, p-PI3K, p-AKT, and p-GSK3β in α-MSH-stimulated B16F10 cells to 

further demonstrate the effects of PCP on melanogenesis. In the absence α-MSH, PCP treatment did 

not stimulate the expression levels of p-JNK, p-38, p-ERK, p-PKA, p-CREB, and p-GSK3β (data not 
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shown). In addition, α-MSH treatment increased the levels of p-38, p-PKA, and p-CREB, while PCP 

with α-MSH pretreatment decreased the expression levels of p-38, p-PKA, and p-CREB (Figure 7). 

 

Figure 6. Effects of PCP on melanogenesis-related protein expression. B16F10 cells were 

exposed to various concentrations of PCP (0.75, 1 or 1.5 mg/mL) for 48 h following 

treatment with or without α-MSH (100 nM) for 24 h. Cellular proteins levels of TRP-1, 

TRP-2, tyrosinase, and MITF were examined by Western blot analysis. PCP, pomegranate 

concentrate powder; α-MSH, α-melanocyte-stimulating hormone; TRP-1, tyrosinase 

related protein 1; TRP-2, tyrosinase related protein 2; MITF, microphthalmia-associated 

transcription factor. a p < 0.05; b p < 0.01 or c p < 0.001 compared with the control (veh) 

using the LSD test; d p < 0.05; e p < 0.01 or f p < 0.001 compared with α-MSH treatment 

only using the LSD test; g p < 0.05 compared with the control (veh) using the Mann-Whitney 

U-test; h p < 0.05 compared with α-MSH treatment only using the Mann-Whitney U-test. 

 

Figure 7. Cont. 
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Figure 7. Effects of PCP on melanogenesis-related signaling pathways. B16F10 cells were 

exposed to various concentrations of PCP (0.75, 1 or 1.5 mg/mL) for 48 h following 

treatment with or without α-MSH (100 nM) for 24 h. (A) ERK, p-ERK, 38 MAPK, p-38, 

JNK, p-JNK; (B) PKA, p-PKA, CREB, p-CREB; (C) AKT; p-AKT (D) GSK-β, p-GSK-β, 

and β-tubulin protein levels were examined by Western blot analysis. PCP, pomegranate 

concentrate powder; α-MSH, α-melanocyte-stimulating hormone; p-ERK, phosphorylated 

extracellular signal-regulated kinase; p-p38, phosphorylated p38 mitogen-activated  

protein kinase; p-JNK, phosphorylated c-Jun N-terminal kinase; p-PKA, phosphorylated  

c-AMP-dependent kinase A; p-CREB, cAMP response element-binding protein; glycogen 

kinase 3β, GSK3β. a p < 0.05; b p < 0.01 or c p < 0.001 compared with the control (veh) 

using the LSD test; d p < 0.01 or e p < 0.001 compared with α-MSH treatment only using 

the LSD test; f p < 0.05 or g p < 0.01 compared with the control (veh) using the Mann-Whitney 

U-test; h p < 0.05 compared with α-MSH treatment only using the Mann-Whitney U-test. 

2.8. Suppression of α-MSH-Induced Alterations through p38 Inhibition 

To confirm that the MPKA signaling pathways are related to the regulation of PCP on 

melanogenesis in MSH-stimulated cells, p38, JNK and ERK inhibitors (SB203508, SP600125 and 

PD98059) were added to test the melanogenesis-altering effects of PCP. As shown in Figure 8, 

treatment with SB203508 and PCP suppressed the levels of p-38 and TRP-1. In contrast, JNK and 

ERK inhibitors did not affect α-MSH-induced alterations (data not shown). 
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Figure 8. B16F10 cells were incubated with 10 μM SB203508 for 1 h before 1.5 mg/mL 

PCP for 48 h following treatment with or without α-MSH (100 nM) for 24 h. 38 MAPK, p-38, 

p-CREB, MITF, TRP-1, and β-tublin examined by Western blot analysis. PCP = pomegranate 

concentrate powder, α-MSH = α-melanocyte-stimulating hormone, p-p38 = phosphorylated 

p38 mitogen-activated protein kinase, p-PKA = phosphorylated c-AMP-dependent kinase 

A, p-CREB = cAMP response element-binding protein, TRP-1 = tyrosinase related protein 1, 

MITF = microphthalmia-associated transcription factor. a p < 0.01 or b p < 0.001 compared 

with the control (veh) using the LSD test; c p < 0.05 or d p < 0.001 compared with α-MSH 

treatment only using the LSD test; e p < 0.01 compared with α-MSH + PCP treatment using 

the LSD test; f p < 0.05 or g p < 0.01 compared with the control (veh) using the Mann-Whitney 

U-test; h p < 0.01 compared with α-MSH + PCP treatment using the Mann-Whitney U-test. 

2.9. Changes in the Transcript Levels of SOD, CAT, GPx-1, and MITF after PCP Treatment in  

B16F10 Cells 

Transcript levels of SOD, CAT, GSR, GPx-1, and MITF were assessed in PCP-treated cells with or 

without α-MSH by real-time PCR. As shown in Figure 9, α-MSH stimulation decreased transcript 

levels of GPx-1 to counter oxidative stress in B16F10 cells. In contrast, PCP treatment restored the 

levels of GPx-1. At a concentration of 1.5 mg/mL PCP, GPx-1 transcript levels were increased to 

similar levels as untreated cells (Figure 9A). α-MSH stimulation decreased the expression of CAT and 

SOD; however, PCP did not affect those of CAT or SOD (data not shown). In addition, PCP treatment 

reduced the α-MSH-induced increase in MITF in B16F10 cells (Figure 9B). 

 

Figure 9. Cont. 
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Figure 9. Transcript levels of (A) GPx-1 and (B) MITF were measured by real-time PCR. 

B16F10 cells were exposed to PCP (1.5 mg/mL) for 48 h following treatment with or without 

α-MSH for 24 h. Values are expressed as the means ± SD from three independent experiments. 

PCP, pomegranate concentrate powder; α-MSH, α-melanocyte-stimulating hormone; veh, 

control vehicle; GPx-1, glutathione peroxidase 1; MITF, microphthalmia-associated 

transcription factors. a p < 0.05 compared with α-MSH treatment only using the LSD test. 

3. Discussion 

A wide variety of polyphenolic compounds derived from natural products possess potent antioxidant 

and anti-melanogenic activities [19–22]. Thus, this study examined the effects of PCP on the 

melanogenesis signaling pathway activated by α-MSH in B16F10 cells. α-MSH was used as a cAMP 

inducer to activate melanin synthesis [33]. Evidence has shown that α-MSH activates the cAMP 

signaling pathway and regulates melanocyte pigmentation [35]. 

We determined that the evaluated concentrations of PCP (0.75, 1, 1.5, and 2 mg/mL) exhibited no 

cytotoxicity in B16F10 cells. Thus, these PCP concentrations were used for subsequent experiments. 

The potential antioxidant effects of PCP were first evaluated. PCP used in this study contains 

ellagic acid (0.36 mg/g) and punicalagin A and B (0.07 mg/g). Ellagic acid is a naturally-occurring 

polyphenolic compound found in many natural sources. It has been demonstrated to show anticarcinogenic, 

antifibrotic, and antioxidantative effects. In addition, it has been reported that ellagic acid inhibited 

UV-induced skin pigmentation of guinea pigs [18] and human skin [36]. Punicalagins are often noted 

as punicalagin; however, it is found naturally as two reversible α- and β-anomers. The punicalagins 

show a potent bioactivity to hydrolyze into ellagic acid and across the mitochondrial membrane  

in vitro. Punicalagin have a protection effect against oxidative damages to lipids, amino acids, and 

guanosine [37,38]. HPLC analysis showed that the total phenolic acid content of PCP was 0.43 μg/mg. 

To more understand the effects of PCP, further studies are required to analyze and examine the active 

components of PCP including ellagic acid and punicalagins A and B. PCP showed strong scavenging 

activity (IC50 value of the phenolic acids was 0.83 μg/mL in this study) compared with the DPPH 

results of Gismondi et al. [39]; Eremomastax speciosa (Hochst.) Cufod., and Aframomum melegueta 

K. Schum. (AM) had IC50 values of 0.36 and 0.55 μg extract per mL, respectively. Our data indicate 

that PCP exerts strong DPPH and ABTS radical scavenging effects. In addition, PCP increased the 

transcript level of GPx-1, which may be involved in the inhibition of oxidative damage in B16F10 

cells. These results suggest that the effects of PCP on melanogenesis are related to the regulation of 
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oxidative stress. Our study did not evaluate the secondary metabolites of PCP; thus, the amount of 

ROS in cells or the oxidative damage was not clarified. Gismondi et al. [40] showed that secondary 

metabolites affects antioxidant protein of cells. In this point, further study is required to examine the 

effects of the antioxidant protein in B16F10 cells of the secondary metabolites of pomegranate. 

Pomegranate seeds and peel exert the strongest antioxidant effects, based on corrected literature data. 

Peels have greater activity than seeds [41,42]; this difference in antioxidant activity may arise from 

differences in their phenolic compositions. In addition, an aqueous extract of dried whole peel had the 

highest antioxidant activity compared with methanolic pomegranate peel extracts [42]. Melanogenesis 

is an oxidizing process; more specifically, melanogenesis-induced reduction of glutathione and 

cysteine is an oxidative stress response in melanocytes. When ROS levels exceed endogenous antioxidant 

capacity, oxidative damage results, which may contribute to the progression of skin aging [43,44]. 

Thus, many antioxidants are used to inhibit melanin production by counteracting the damaging effects 

of ROS. Antioxidant enzymes, including GPx-1, SOD, and CAT, are important factors in maintaining 

redox homeostasis [45,46]. In addition, the amount of enzymatic antioxidants such as CAT and GPx 

was changed in B16F10 cells after essential oil and propolis [40]. GPx-1 is a ubiquitously expressed 

cytosolic enzyme with peroxidase activity whose main biological role is to protect the cell from 

oxidative damage, and is a pivotal enzyme responsible for the removal of H2O2 [47]. In the process of 

melanogenesis, H2O2 is overproduced and leads to oxidative stress in skin cells [48]. 

To determine whether PCP inhibits the process of melanin biosynthesis, tyrosinase activity, and 

melanin production were examined in B16F10 cells in the absence or presence of α-MSH. Protein levels 

of tyrosinase, TRP-1, TRP-2 and MITF were also determined. Our results indicate that PCP treatment 

following α-MSH application significantly inhibits tyrosinase activity compared with α-MSH-stimulated 

cells. In addition, 1 and 1.5 mg/mL PCP treatment resulted in decreased melanin production.  

Melanin production in α-MSH-stimulated cells increased three-fold relative to that of vehicle-treated 

control cells; however, melanin content in PCP-treated cells was diminished compared with that of  

α-MSH-stimulated cells. The protein level of TRP-1, tyrosinase, and MITF in PCP-treated cells 

following α-MSH application was reduced compared with α-MSH-stimulated cells. These results 

suggest that PCP has the potential for skin whitening. PCP suppressed α-MSH-stimulated melanogenesis 

in B16F10 cells through inhibition of tyrosinase and down-regulation of TRP-1, leading to decreased 

melanin content. Melanin is synthesized in melanocytes and moved into keratinocytes to protect cells. 

Melanin biosynthesis is regulated by levels of tyrosinase, TRP-1, and TRP-2 [2,49]. Tyrosinase 

activity is important for controlling melanogenesis, since it functions as a catalyst of the rate-limiting 

reaction of the melanogenic pathway. Thus, inhibition of tyrosinase is the most common approach 

used for skin whitening [50,51]. 

We found that PCP may inhibit melanin biosynthesis through down-regulation of the p38 MAPK 

pathway in B16F10 cells. PCP reduced the phosphorylation of p38 MAPK, but not ERK or JNK.  

In addition, PCP treatment reduced the α-MSH-induced increase in MITF and decreased the 

phosphorylation of PKA, CREB, and GSK-β compared with α-MSH alone. This indicates that the  

p38 and PKA signaling pathways are associated with the effects of PCP on melanogenesis in B16F10 

cells. In addition, phosphorylation of AKT was not affected, whereas GSK-3β phosphorylation was 

decreased in PCP + α-MSH compared with α-MSH alone. The mechanism of GSK-3β phosphorylation 

is not clearly understood, and further studies will be required to elucidate the role of regulating the 
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GSK-3β level in the PCP whitening effect. Various signaling pathways regulate melanin pigment 

formation. Among the pathways related with the process of melanogenesis, p38 MAPK signaling was 

recently demonstrated to be involved in stress-induced melanogenesis [52]. Melanogenic stimuli such as 

α-MSH, UV irradiation, lipopolysaccharide, and placental total lipid fraction trigger a sustained 

increase of phospho-p38 MAPK active form [52–55]. However, the effective contribution of p38 

MAPK in melanogenesis is not clearly understood. Melanogenic gene expression is regulated 

primarily by MITF, a transcription factor controlled by the levels of cAMP, phosphatidylinositol  

3-kinase (PI3K)/AKT and MAPKs. PKA is responsible for the phosphorylation of CREB, and the 

activation of CREB phosphorylation induces MITF transcription. cAMP-induced PI3K inhibition 

results in a decrease in AKT phosphorylation and its activation [56]. Thus, AKT fails to phosphorylate 

GSK-3β. Subsequently, cAMP diminishes the phosphorylation of GSK-3β and promotes its activity [57]. 

Therefore, cAMP-mediated GSK-3β activation stimulates MITF binding to the tyrosinase promoter 

and lead to the activation of melanogenesis. In addition, there is much evidence that the Wnt signaling 

pathway is associated with MITF expression. Activation of the Wnt pathway suppresses GSK-3β 

activity and results in β-catenin accumulation. The accumulated β-catenin is moved into the nucleus 

and binds with the lymphoid-enhancing factor/T-cell factor (LEF/TCF) [58], thereby increasing MITF 

expression. Therefore, GSK-3β is implicated in the regulation of melanogenesis [56]. MAPKs (p38, 

ERK and JNK) also play essential roles in the regulation of melanogenesis [59]. It was reported that 

p38 activation contributes to melanin production [54] by activating CREB, which in turn activates 

MITF expression [60]. MITF plays an important role in melanin production by upregulating the 

transcription of melanogenic proteins, including tyrosinase, TRP-1 and MC1R. When p38 MAPK 

signaling is interrupted, CREB activation is inhibited. Consequently, the expression of melanogenic 

enzymes is hindered due to the limited expression of MITF. In addition, p38 MAPK was recently 

demonstrated to be associated with UV-induced melanogenesis, leading to the activation of MITF and 

increased tyrosinase expression [61]. In contrast, the ERK and JNK pathways cause down-regulation of 

melanin synthesis. The regulation of melanogenesis is related with activation of the MEK/ERK and 

PI3K/AKT signal transduction [59,62,63]. In notice, the cAMP pathway is regulated through a  

PI3K-dependent signal transduction cascade involving both PKA and Ras/ERK pathway in 

melanogenesis. In human melanoma cells, either an increase in the level of cAMP or inhibition of 

PI3K affects melanin formation by decreasing Akt phosphorylation [56,57]. 

We also examined whether the production of α-MSH-induced ROS is mediated via apoptosis  

signal regulating kinase 1 (ASK1), the upstream kinase of p38. We found that, following α-MSH 

treatment, the level of ASK-1 was enhanced slightly (data not shown); therefore, it is hypothesized that 

the anti-oxidative effect of PCP is not mediated by ASK1 inhibition. 

4. Experimental Section 

4.1. Chemicals 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 3,4-dihydroxy-L-phenylalanine 

(L-DOPA), arbutin, kojic acid, L-tyrosine, tyrosinase from mushrooms, phenylmethanesulfonyl 

fluoride (PMSF), α-melanocyte-stimulating hormone (α-MSH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 
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2,3-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), synthetic melanin, L-ascorbic acid 

(vitamin C), and (+)-α-tocopherol (vitamin E) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Primary antibodies against p-p38 MAPK (Thr180/Tyr182), p-p44/42 MAPK p-Erk 1/2 

(Thr202/Tyr204), p-SAPK/JNK (Thr183/Tyr185), phospho-c-AMP-dependent kinase (PKA) (Thr197), 

phospho-cAMP response element-binding protein (CREB) (Ser133), phospho-glycogen kinase 3β 

(GSk3β) (S9), phospho-AKT (S473), and phosphor-apoptosis signal regulating kinase 1 (ASK1) 

(Thr845) were purchased from Cell Signaling (Danvers, MA, USA). Primary antibodies against 

tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 2 (TRP-2), tyrosinase, p38, ERK, JNK, 

GSk3β, AKT, and β-tubulin were obtained from Santa Cruz Biotechnology (Dallas, TX, USA). 

Primary antibodies against MITF were obtained from Abcam (Cambridge, UK). All test materials were 

maintained at 4 °C until use. 

4.2. Preparation of Pomegranate Concentrate Powder 

Dried PCP was obtained from Health-Love Therapeutics (Anyang, Korea), who purchased the PCP 

from Asya Fruit Juice and Food Industry (Ankara, Turkey). Pomegranate powder was prepared as 

follows. Briefly, pomegranate fruit was washed and the rind removed. Pomegranate juice and seeds 

were separated using a Bucher press. The juice was sterilized at high temperatures. The sterilized 

pomegranate juice was depectinized using pectinase. The juice was then filtered and evaporated. The 

concentration was diluted to 0.75–8 mg/mL with distilled water. PCP was maintained at 4 °C until use. 

4.3. Proximate Analysis of Pomegranate Concentrate Powder 

PCP was dried at 70 °C to a constant weight. Moisture content, ash, and crude fiber were 

determined by the Association of Official Analytical Chemists (AOAC) methods [64]. Nitrogen 

contents (N) of the sample were estimated, and crude protein was calculated as N × 6.25. Total lipids 

were extracted from the samples with chloroform/methanol (2:1, v/v) and gravimetrically quantified. 

The amount of total carbohydrates was obtained by determining the difference between the weight of 

the sample taken and the sum of its moisture, ash, total lipid, protein, and fiber content (Table 1). The 

PCP was found to consist of total-protein (1.79%), total-lipid (10.66%), carbohydrate (83.76%), water 

(3.05%), and ash (0.71%). 

Table 1. Proximate analysis of PCP. 

Component Contents 

Energy 438.14 Kcal/100 g
Carbohydrate 0.84 g/g 

Sugar 0 mg/g 
Total protein 0.018 g/g 

Total lipid 0.11 g/g 
Sodium 21.65 mg/100 g 
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4.4. HPLC Analyses of Phenolic Acids in Pomegranate Concentrate Powder 

One thousand mg powder was suspended in 50 mL of methanol, sonicated for 30 min, mixed,  

and filtered through a 0.45 μm PTFE (polytetrafluoroethylene) syringe filter. The filtrate was then 

analyzed by HPLC. HPLC fractionation was achieved with an Agilent Technologies HPLC 1260 

System (Santa Clara, CA, USA) fitted with a Cadenza 3 μm CD-C18 column (150 × 4.6 mm) and 

equipped with a photodiode array detector. Samples were separated with a 0.5% acetic acid and 

acetonitrile elution gradient (Table 2). The column elution rate was kept at 0.7 mL/min and the 

injection volume was 10 μL for standard and sample. The chromatogram was taken at variant wave 

lengths (210 nm for Salicylic acid; 254 nm for punicalagins A and B, ellagic acid, and protocatechuic 

acid ethyl ester; 280 nm for gallic acid, syringic acid, p-coumaric acid, and cinnamic acid; 329 nm for 

chlorogenic acid, and trans-ferulic acid; 370 nm for quercetin, kaempferol, and isorhamnetin), 

integrated, and analyzed using an Agilent Chemstation (Agilent Technologies, Santa Clara, CA, USA), 

a chromatography data system. The PCP contains ellagic acid (0.36 mg/g) and punicalagins (0.07 mg/g), 

and the other phenolic acids were not detected (Figure 10). 

Table 2. HPLC column elution gradient for pomegranate concentrate powder. 

Time (min) Acetic Acid (%) Acetonitrile (%)

0 95 5 
5 95 5 

17 85 15 
40 80 20 
60 50 50 
70 50 50 
75 0 100 
80 0 100 
85 95 5 
90 95 5 

 

Figure 10. HPLC chromatogram of pomegranate concentrate powder. Peaks represent total 

punicalagins and ellagic acid. 
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4.5. Cell Cultures 

B16F10 murine melanoma cells (CRL-6475) were obtained from the American Type Cell Collection 

(ATCC, Manassas, VA, USA). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS; Gibco,  

NJ, USA) and 1% penicillin (Sigma-Aldrich). Cells were cultured at 37 °C in a CO2 incubator with a 

humidified atmosphere containing 5% CO2. Culture medium was changed every two days. 

4.6. Cell Viability Assay 

The cell viability assay was performed using MTT [65]. B16F10 cells were incubated with various 

concentrations of PCP (0.75, 1, 1.5, 2, 4, and 8 mg/mL) for 72 h after pretreatment with 100 nM α-MSH 

for 24 h. After incubation, MTT solution was added to the wells. The insoluble derivative of MTT 

produced by intracellular dehydrogenase was solubilized with dimethylsulfoxide (DMSO). Absorbance 

of the wells was measured at 570 nm using a microplate reader (TECAN, Männedorf, Switzerland). 

4.7. DPPH Radical Scavenging Activity Test 

DPPH radical scavenging assay was performed according to the method of Impei et al. [66]. 

Briefly, 0.2 mM DPPH solution (Sigma-Aldrich) in methanol was prepared and used immediately. 

Each sample solution was diluted with distilled water to final PCP concentrations of 0.75, 1, 1.5, 2,  

4, and 8 mg/mL, or final vitamin A and C concentrations of 1 mg/mL. Optical density (OD) was 

measured at 517 nm after 10 min with a UV-Vis spectrophotometer (TECAN). Free radical scavenging 

activity was calculated as follows: DPPH radical scavenging activity (%) = 100 − ((ODs/ODc) × 100), 

Where ODs represents the absorbance of the sample at 517 nm and ODc represents the absorbance of 

the vehicle-treated control at 517 nm. Vitamins A and C were used as positive controls. 

4.8. ABTS Antioxidant Activity Determination 

The ABTS assay was performed using the method of El-Said et al. [42] with some modifications. 

Stock solutions of 7.4 mM ABTS+ and 2.6 mM potassium persulfate were prepared. Next, a working 

solution was made by mixing each stock solution and reacting solution for 12 h at room temperature  

in the dark. The solution was then diluted by mixing 1 mL ABTS+ solution with 30 mL methanol to 

obtain an absorbance of 0.70 ± 0.02 units at 734 nm using a spectrophotometer. Fresh ABTS+ solution 

was prepared for each assay. PCP (150 mL) was allowed to react with 2850 mL ABTS+ solution for 2 h 

in the dark. Absorbance was then determined at 734 nm using a spectrophotometer. Additional dilutions 

were prepared if the measured ABTS value exceeded the linear range of the standard curve. Antioxidant 

activity was calculated as follows: ABTS scavenging activity (%) = 100 − ((ODs/ODc) × 100). 

4.9. Total RNA Extraction and RT-PCR Analysis 

Total RNA was extracted from liver tissue samples using TRIzol reagent (Invitrogen, Carlsbad, CA, 

USA). cDNA was synthesized via a reverse transcriptase (RT) reaction, and polymerase chain reaction 

(PCR) amplification was performed using a thermal cycler (Bio-Rad, Hercules, CA, USA). Real-time 
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RT-PCR analysis was carried out with a Bio-Rad CFX96TM (Bio-Rad) using iTaq™ SYBR Green 

SuperMix (Bio-Rad). Primers were obtained from Bioneer (Daejeon, Korea). Primer sequences for 

mouse genes are as follows: modulatory subunit of GCL (GCLM), 5′-AGGAGCTTCGGGACT 

GTATT-3′ and 5′-TGGGCTTCAATGTCAGGGAT-3′; catalytic subunit of GCL (GCLC), 5′-CAA 

GGACGTGCTCAAGTGG-3′ and 5′-GTAACTCCCATACTCTGGTCTC-3′; superoxide dismutase 1 

(SOD-1), 5′-GTTCCACGTCCATCAGTATG-3′ and 5′-ACACGATCTTCAATGGACAC-3′; 

glutathione peroxidase 1 (GPx-1), 5′-GGGACTACACCGAGATGAAC-3′ and 5′-TCACTTCGCAC 

TTCTCAAAC-3′; glutathione reductase (GSR), 5′-CAGGCATGATAAGGTACTGAG-3′ and  

5′-CATCTGGAATCATGGTCGTG-3′; catalase (CAT), 5′-CAAAGGTGTTGAACGAGGAG-3′ and  

5′-TGTAGGTGTGAATTGCGTTC-3′, and hypoxanthine-guanine phosphoribosyl transferase 

(HPRT), 5′-AGATGTCATGAAGGAGATGG-3′ and 5′-TACAGTAGCTCTTCAGTCTG-3′. 

4.10. Tyrosinase Assay 

Tyrosinase activity was determined according to the method of Masamoto [67]. Briefly, aliquots 

(0.05 mL) of PCP (0.75, 1, 1.5, 2, 4, and 8 mg/mL) were mixed with 0.5 mL L-DOPA (Sigma-Aldrich) 

solution (1.25 mM) and sodium acetate buffer solution (0.05 M, pH 6.8), and preincubated at 25 °C for 

10 min. An aqueous solution of mushroom tyrosinase (110 U/mL; Sigma-Aldrich) was then added to 

the mixture. This solution was immediately monitored for the formation of dopachrome by measuring 

the linear increase in OD at 475 nm with a UV-Vis spectrophotometer, and tyrosinase inhibitory 

activity was calculated using the following equation: tyrosinase inhibitory activity (%) = 100 − 

((ODs/ODc) × 100), where ODs represents the absorbance of the experimental sample at 475 nm and 

ODc represents the absorbance of the vehicle-treated control at 475 nm. Results are reported as the 

IC50 (the concentration at which the percentage inhibition of tyrosinase activity was 50%). Kojic acid 

(25, 50, 100, 200, and 400 μM) was used as a standard under the same experimental conditions. 

4.11. Cellular Tyrosinase Assay 

Cellular tyrosinase activity was determined using a previously described method [68]. B16F10 cells 

were incubated with various concentrations of PCP (0.75, 1, and 1.5 mg/mL) and kojic acid (50, 100, 

200, and 400 μM) for 72 h after pretreatment with 100 nM α-MSH for 24 h. At the end of this 

treatment, cells were lysed with phosphate buffer (pH 6.8) containing 1 mM PMSF. Lysates were 

clarified by 10 min centrifugation at 13,000 rpm. The amount of protein in each lysate was quantified 

and concentration adjusted with lysis buffer. Next, 40 μL of each lysate was mixed with 200 μL  

10 mM L-DOPA and incubated for 30 min at 37 °C. This solution was immediately monitored for  

the formation of dopachrome by measuring the linear increase in OD at 475 nm with a UV-Vis 

spectrophotometer, and tyrosinase activity was calculated using the following equation: tyrosinase 

activity (%) = ((ODs/ODc) × 100), where ODs represents the absorbance of the experimental sample at 

475 nm and ODc represents the absorbance of the vehicle-treated control at 475 nm. Kojic acid  

(200 μM) was used as a standard under the same experimental conditions. 
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4.12. Melanin Formation Test in B16/F10 Melanoma Cells 

Melanin content was measured using a method described previously [59] with slight modifications. 

Cells were exposed to various concentrations of PCP (0.75, 1 or 1.5 mg/mL) and arbutin (0.5, 1, 2,  

and 4 mM) for 72 h, and then in the presence or absence of 100 nM α-MSH (Sigma-Aldrich) for 24 h. 

The number of cells in each sample was counted, and the same total number of cells was obtained. 

Following treatment, cells were washed with phosphate-buffered saline (PBS) and dissolved in 1 M 

NaOH containing 10% DMSO for 1 h at 90 °C. Absorbance was measured at 400 nm using a 

microplate reader. Total melanin in each cell suspension was determined by recording the absorbance 

of each suspension at 405 nm. Melanin content was calculated by interpolating the results from a 

standard curve generated using the absorbance of known concentrations of synthetic melanin  

(Sigma-Aldrich). Arbutin (2 mg/mL) was used as a standard under the same experimental conditions. 

4.13. Western Blot Analysis 

Cells were dissolved in RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP40) 

containing a protease inhibitor cocktail (Sigma-Aldrich). Protein concentration was determined using  

a DC Protein Assay Kit (Bio-Rad). Protein samples were loaded onto 10% sodium dodecyl sulfate 

(SDS)-polyacrylamide gels and separated according to molecular weight. Gels were transferred to 

polyvinylidene fluoride (PVDF) membranes (Whatman, Dassel, Germany) using a Trans-Blot®  

Semi-Dry Cell (Bio-Rad). Membranes were blocked with 5% skim milk or 5% bovine serum albumin 

(BSA) for 1 h. Primary antibodies (p-ERK, p-p38, p-JNK, TRP-1, TRP-2, tyrosinase, or β-tubulin) 

were added and incubated overnight at 4 °C. Membranes were then incubated with secondary 

antibodies for 1 h. Enhanced chemiluminescence (ECL) solution was added and the membranes were 

exposed to film (Kodak BioMax XAR film, Kodak, Japan). 

4.14. Statistical Analyses 

All data are expressed as the mean ± standard deviation (SD) from three independent experiments. 

Multiple comparison tests for different dosage groups were conducted. The homogeneity of variance 

was examined using Levene’s test. If this test indicated no significant deviation from the variance of 

homogeneity, the obtained data were analyzed using one-way analysis of variance (ANOVA) followed 

by the least-significant differences (LSD) multiple-comparison test to determine which pairs in the 

group were significantly different. If Levene’s test showed significant deviation from variance 

homogeneity, the non-parametric Kruskal–Wallis H test was conducted. When a significant difference 

was observed with the Kruskal–Wallis H test, the Mann-Whitney U-test was used to identify specific 

pairs in the group that were significantly different. The IC50 value for each in vitro assay was 

calculated using probit methods. Statistical analyses were conducted using SPSS for Windows  

(release 14.0K; SPSS, Chicago, IL, USA). 
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5. Conclusions 

Collectively, these results suggest that PCP exerts whitening effects. PCP effectively decreased 

tyrosinase activity and melanin production in B16F10 cells, which may be attributed to its inhibitory 

action on melanogenesis via inactivation of the p38 signaling pathway. 

Our results indicate that PCP has potential antioxidant characteristics and exerts strong DPPH 

radical scavenging effects. PCP increases transcript levels of GPx-1. In addition, PCP exerts whitening 

effects by effectively decreasing tyrosinase activity and melanin production in B16F10 cells, which is 

attributed to its inhibitory action on melanogenesis via inactivation of the p38 and PKA/CREB 

signaling pathway. 
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